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Abstract 

This is the text of a series of lectures given to Fermilab post dots and students. The plan of 

the lectures is to begin with a discussion on electroweak decays (Section 1) First, we discuss the 

decays of the vector gauge bosons which are of order aw and following that the decays of leptons 

with virtual intermediate gauge bosons which are of order aw2. Then an attempt is made to look 

very briefly at the decays of light mesons and baryons. Following that there is a brief discussion 

of the Cabbibo-Kobayashi-Maskawa (CKM) matrix, flavor changing neutral currents, FCNC, and 

the FIM mechanism to suppress flavor changing neutral currents. Finally, Section 1 ends with a 

discussion of semileptonic decays of heavy quark mesons. 

In Section 2, the topic of nonleptonic weak decays of heavy quark mesons is taken up. 

First, there is a discussion of spectator, annihilation, and exchange graphs. Following that, one 

assumes that the spectator amplitudes dominate and various conclusions drawn from that 

dominance are examined in nonleptonic B and D decays. Finally, a discussion of penguins and 

loops in rare decays in higher order is taken up to end Section 2. 

Section 3 is devoted to a discussion of the phenomenology necessary to discuss CP 

violation. First, the mass and decay matrices are defined, followed by a discussion of the 

eigenvalue problem. The eigenvalue problem solution leads to a definition of the E parameter. 

This parameter indicates CP violation in the mass matrix. The implication of CP violation and 

mixing for the time evolution of a two state system and the CP violation asymmetry then round 

out Section 3. 

Section 4 is a discussion of CP violation and mixing in detail. We begin with the time 

evolution of the states and the CKM phases. Following that the unitary triangle is defined. Then 

follows a discussion of kaon decays. Section 4 concludes with an explication of what information 

can be gained from time integrated data from lepton pairs, from semileptonic K decay 

asymmetry, from mixing data, and finally from CP violation asymmetry. 

Section 5 consists of a descripton of the box diagram and Standard Model, SM, 

calculations for the parameters which have been defined and discussed in the previous Sections. 

We begin with a discussion of the mass difference and higher order effects in the gauge bosons 

due to top quark loops. Following that we have an estimate of flavor changing neutral current 

decays. Then the B system and the GIM mechanism are revisited. There is a discussion of the 

decay matrix calculation in the Standard Model and an estimate of the size of the E parameter for 

the B and K systems. Following that, the mixing parameter x is estimated for the D and B 

systems. Finally, there is a brief discussion of the E’ parameter and electromagnetic penguins in 

the kaon system. 
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The references which are given in this volume of lecture notes are extremely limited and 

indicate an idiosyncratic choice of some of the references used by the author. There are many 

review articles on B physics; an extensive literature exists which is accessible in the bibliography 

found in those articles. 



1. INTRODUCTION TO EW DECAYS 

1.1 W, Z Decays, 0 ( czW). FCNC, and GIM 

In thinking about decay processes, it is perhaps best to begin with the simplest possible 

decay mechanisms. For that reason, we begin with first order electroweak processes which arc the 

decays of the gauge bosons themselves. Let us begin with the charged gauge bosons, the W 

particles. They couple to lepton and quark pairs and, since they are responsible for the charged 

curtent interaction, they couple to charged pairs; for example, the electron neutrino, (eve) the muon 

neutrino @VP), and the z neutrino (zvl) pairs. They also couple to quark pairs and they do so in 

a fashion which we will be explicating throughout these lectures. The decay diagram for a W+ is 

shown in Fig. 1.1.1. For now, we list in Eqs. 1.1.1 only those decays which are favored in the 

Cabbibo-Kobayashi-Maskawa (CKM) coupling scheme. That scheme we will explain later. 

w++fic e+P+r+ 
d s v, v,, vy 

tl(w+ + P’+Vp I- l/9 

1.1.1 

One then counts the final state degrees of freedom in order to estimate the branching ratio 

into these different decay modes. We have to remember that there are three color degrees of 

freedom which means that, for example, the branching ratio of a W boson into a muon and 

neutrino we would predict to be roughly one ninth. And indeed, looking at the Particle Data Group 
tables, that is the observed branching ratio. 

What about the Lorentz structure of the decays ? Well, suffice it to say, a summary of 

many years of study leads us to believe that a V-A pattern is the structute of the weak interactions. 

The interaction Lagrangian for that theory is given below: 

LI -i&*(1-Ys)YWA 

-&&w” 

- &vii,Yn u- wvw* . 

1.1.2 

The V-A theory for leptons implies that quarks are left-handed with respect to helicity as 

are leptons, whereas antiquarks and antileptons are. right-handed. That means one can draw the 

favored helicity orientation in a W leptonic decay as shown in Fig. 1.1.2. The W boson is a vector. 

In a two body decay the electron and antineutrino come out on opposite sides in order to conserve 

momentum. Looking at Fig. 1.1.2, one sees that spin is simultaneously conserved. 
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Fig. 1.1.1 First order EW decay diagram for W to quark and lepton pairs. 

Fig. 1.1.2 (V-A) heliciry structure for W- + e-v, decay. 
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What about the absolute rate and the coupling constants? As one can see from Fig. 1 .l. 1, 

this is a fist order process and one can therefore expect that the decay rate is proportional to the 
first power of the weak line structure constant, aw. Since there is only one other mass scale in the 

problem, which is the mass of the boson itself, from dimensional arguments the width of the W 
boson should be proportional to a, times the mass of the W boson. 

“w=g,*/4n-1/30 
1.1.3 

rW - awMw 

The W boson weighs about 100 GeV. Therefore, the width should be of order 3 GeV 

which is what is observed as one can see in looking at the book of Particle Data Properties. 

What about the decays of the neutral EW gauge boson, Z, which is responsible for the 

neutral current interaction? For the W boson we’ve simply put up all the CKM allowed charged 

current combinations and said that they were all universally and equally coupled to the W through 
an EW coupling constant gw. For the neutral gauge bosons something more subtle must be 

going on. For example, if one looks at Fig. 1.1.3 and allows coupling of the Z to any neutral 

quark antiquark combination, then one allows for the existence of a flavor changing neutral current 

(FCNC) decay. In Fig. 1.1.3 the decay is kaon goes to muon pairs. We know experimentally that 

this decay is very rare. Therefore, we cannot allow 2 to couple to all possible combinations of 

neutral quark antiquark pairs in analogy to what we did for the W boson. 

What we do know is that the quarks are produced strongly. Therefore, they are strong 

eigenstates. Since the weak interactions violate many of the strong interaction selection rules, there 

is no need that the weak eigenstates be congruent to the stiong eigenstates. 

D’=VD 

sine-O.2 

1.1.4 

In fact, we can allow an arbitrary rotation of the negatively charged quarks due to the 

mismatch between strong and weak eigenstates. The coupling of the Z boson to the up, down, 

charm and strange quarks is then as shown in Fig. 1.1.4. Given the Cabbibo rotation shown in 

Eqs. 1.1.4, the neutral current amplitude for the Z is; 
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Fig. 1.1.3 Possible K” t P+/J- FCNC decay diagram with Z” intermediate state. 
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Fig. 1.1.4 Z + qq couplings and the GIM mechanism for cancellation of FCNC. 
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a, -uii+cc 

+ (dd)cos* tJ+ (sS)sin’ 0 

+ (sd + Sd) sin 6 cos 8 

+ (dd)sin’ f3 + (sS)c0s2 e 

-(sd+Y4sinecost?. 

1.1.5 

Note that the existence of two doublets (up and down, charm and strange) automatically 

cancels out the flavor changing neutral current to this order in the amplitudes. 

a, - uii+c~+&-+ss 
- 644’ 

1.1.6 

This was, in fact, part of the theoretical motivation for predicating the existence of charm. 

The charm quark was required to cancel the flavor changing neutral currents which were not 

observed, for example, in KL decay into two muons. Therefore, one can assume that Z decays 

only to quark antiquark pairs of exactly the same flavor and color. This absence of flavor changing 

neutral currents to first order is called the GIM mechanism. 

Note though that what one has left (Eqs. 1.1.6) is a universal equal strength coupling of Z 

to the quark antiquark pairs. It is clear that requiring that the transformation matrix be unitary 

insures both universality and the absence of flavor changing neutral currents. Therefore, we expect 

that if there are more generations of quarks, then the unitarity of the matrix connecting the weak 

and strong eigenstates insures the absence of FCNC. We will see later that this first order 

cancellation of FCNC fails in higher orders. However, FCNC decays are still suppressed and 

therefore, will remain ram decays. 

1.2 Decays of Leptons, O(aw2) 

Having considered the simplest possibilities, the first order decays of W and Z electroweak 

gauge bosons, let’s go on to the next simplest electroweak decays. Those are the decays of leptons 

with virtual intermediate gauge bosons. These decays are second order, but there are few strong 

interaction effects, at least for the lightest leptons. The electron is straight forward since it is stable. 

The muon is a “heavy electron” and can decay leptonically into an electron and a neutrino 

antineutrino pair. The second order electroweak diagram for this decay is given in Fig. 1.2.1. The 

existence of the intermediate W and the l/ (q* + M$) b e h avior of the W propagator in the 

amplitude means that, on dimensional grounds, one expects a decay width which goes as the fifth 

power of the mass of the decaying particle. 
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1.2.1 

This is an extremely important scaling property which we will be using throughout this 

note. It works over many orders of magnitude in the scaling of decay rates. 

What about the implication of the Lorentz V-A structure that we have already talked about? 

This is a three body decay and there is a preferred orientation which is forced upon the decay by 

the V-A helicity structure, as shown in Fig. 1.2.2. The electron is favored to come out recoiling 

against the neutrino antineutrino pair. That pair has its spins paired so that the muon spin is 

aligned to the electron spin. This orientation implies that the electron carries roughly the maximum 

available energy. 

As we’ll see, the coupling constant for this decay is determined from a measurement of the 

decay rate. This effective coupling constant is called the Fermi coupling constant, which has 

dimensions. 

G = 1.2 x 10” (GeV)-' 1.2.2 

A similar coupling is also measured in nuclear beta decays. However, we will not discuss 

them at all. Suffice it to say that the muon and nuclear beta decays are completely consistent with 

one another and imply the universal coupling of quarks and leptons as mentioned already. That is, 

of course, not the whole story. The effective Fermi theory is a low energy approximation to the 

electroweak theory. The weak interaction is related to the electromagnetic interaction. The 

synthesis of those two forces implies that the electroweak fine structure constant is proportional to 

the Fermi coupling constant. 

g,*/8Mw2=G/~ 

gwsinBw =e 

na, / d?Mw2 = G 

1.2.3 

What is seen in Eqs. 1.2.3 is the relationship between the fundamental electroweak 
coupling constant, gw, and the Fermi coupling constant, G. It’s also true that the electroweak 

coupling constant is proportional to, and comparable to, the electromagnetic charge. In what 

follows, we will use the effective weak interaction Fermi constant, G, and the electroweak fine 
structure constant, aw. interchangeably. 
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9, 
e- 

W/ < Ve 
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VP 

gw 

Fig. 1.2.1 Second order EW decay diagram for p- --f e-YevF. 

Fig. 1.2.2 (V-A) helicity structure for the 3 body decay, p* + efvel;. 
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It is worthwhile to look mote deeply into the muon decay rate because it will be the basis 

of the study of many other semileptonic rates such as those of heavier leptons and quarks. The 

differential decay rate is defined by kinematics and by the V-A dynamics to which we’ve already 

alluded. 

dr-(tielEe) {aw2[x(3-2x)]} 

x=&*l(M/J2) 

dl- -4nPedP,G2Mp3[x(3-2x)] 

-G*M 'x*(3-2x)& 0 

1.2.4 

The phase space factor is factored out along with the coupling constant and the dependence 

on x, where x is the fraction of the maximum possible electron momentum in the center of mass. 

The x dependence is imposed by the dynamics of the V-A theory. Recall that an x of 1 is the 

favored alignment, as we saw in drawing a graph of the helicity structure for this decay. Both the 

scaling of the decay width with the fifth power of the q value in the decay and the high x peaking 

imposed by the Lorentz structure of electroweak dynamics are evident in Eq. 1.2.4. 

The observed width for the muon is 3 x lo-l9 GeV or, what is perhaps easier to remember, 

a lifetime of 2.2 microseconds. 

rP - G2Mp’ - 

rp = Tiz35 , zll = 2.2 psec 

1.2.5 

The dimensional scaling argument leads you to a decay rate estimate which is close. One 

takes the exact calculation as one way to measure the Fermi coupling constant G. As mentioned 

before, this value of G is cross checked with the value extracted from nuclear beta decay. 

What about r decays? Since the z is another sequential heavy lepton, we expect to be able 

to understand its behavior in the same way that we understood muon decays. The simplest second 

order electroweak decay diagram that one can draw is given in Fig. 1.2.3. This diagram is just Fig. 

1.1.1 folded back on itself to concatenate two first order diagrams in order to get a second order 

diagram. First let’s ask about the branching ratios. Naive color counting and the CKM allowed 

possible charged currents lead you to expect a branching ratio into muons of one fifth. 
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u e+ p l 
2+ --f _ = 3:1:1 

d ve vu 
1.2.6 

The data on the branching ratios for 7 is given in Table 1.1. Indeed, the leptonic branching 

ratios are roughly 20%, whereas the hadronic branching ratios make up the remainder. The 

hadronic decay modes appear to be dominated by the vector p in the final state. Simple hadronic 

diagrams for the decay of the virtual W are given in Fig. 1.2.4. Numerically one finds that the 

leptonic decay rate for z agrees very well with the muon decay rate scaled up as the fifth power of 

the lepton mass. 
5 

r(z- --f e-ii,~, - + rp 
)( 1 Ir 

1.2.7 

As seen in Table 1.1, the assumption of universal lepton coupling and of simple color 

counting for the branching ratios seems to be well satisfied. The quark antiquark decays of the 

virtual W cause us now to have to think about the strong interactions. For example, it looks as if 

the vector W+ is preferentially coupled to the vector p+ in the ud decay of the virtual W+. This 

means that the assumption that the weak charged current is dominated by meson poles is perhaps 

plausible. It would seem as if the decays of the leptons, the muon and the z, can be simply related 

to knowledge of W and Z decays. One imagines that any heavier sequential leptons will follow a 

similar path and therefore, that one will have some rough understanding of the branching fractions, 

the kinematics, and the dynamics of sequential heavy leptons. 

1.3 q4.qqq Decays, O(a,*) 

We give now an extremely brief and cursory discussion of the decays of light mesons and 

baryons. This is, in fact, an entire subject unto itself. What we will try to do is to extract those 

salient features which am needed for the discussion of the decays of heavy flavors, in particular, 

the b quark. By light hadrons we mean those consisting of up, down or strange quarks. 

First let’s consider the lightest meson, the pion. It has a purely leptonic decay. Recall the 

helicity assignments imposed by the V-A interactions. For example, quarks are left-handed. 

However, one needs to know that this is only true in the limit of massless quarks. In fact, the 

helicity is roughly equal to beta, which is the velocity possessed by the quark divided by the speed 

of light. 

<O.F>=gl 

7t -f+ ev 

14 
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gw e- p- d 

2- w-1 < vvu 
e P / 

VT 
gW 

Fig. 1.2.3 Second order EW decay diagram for z- + v,W- where W- can virtually decay 

into quark or lepton pairs. 

d------ - - c u p-+f-z” 
U U 

Fig. 1.2.4 Quark diagrams for hadronic final states in virtual W- A dii decays. 
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TABLE 1.1 

z DECAY BRANCHING RATIOS 

DECAY MODE 

Pfi 

evV 

Z-V 

P-V 

3nv 

(‘4 

BR (%) 

17.8 

17.7 

11.0 

22.7 

14.6 
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As one can see from looking at Fig. 1.3.1, in distinction to W decay, the high velocity pion 

decay to electron is disfavored. In fact, the pion decays into muons and not electrons. This is the 

reason why Fermilab has muon neutrino beams and not electron neutrino beams. Sometimes 

theoretical ideas have profound “practical” implications. 

Let us turn now to the semileptonic strange decays. 

s-tue-v 1.3.2 

The basic diagram for this decay is given in Fig. 1.3.2. One expects the same sort of 

branching fractions as for the z since the diagrams are essentially the same. However, one expects 

that the absolute rate is suppressed by CKM vertex factors. Looking at Eqs. 1.1.4, the rate relative 

to say muon decay, all else being equal, would be reduced by a factor of about 25. We will 

assume that the strange particle “spectator” decay shown in Fig. 1.3.2 is the dominant diagram for 

the semileptonic decays of mesons and baryons. We will discuss the possible reasons for this 

dominance later. In this note we will only look at semileptonic decay rates of light mesons and 

baryons. A compendium is given in Table 1.2. What is extremely gratifying to see is that the 

semileptonic rates are all of the order of a few times 10‘ t8 GeV for both mesons and baryons. 

This leads us to believe that, indeed, the spectator mechanism, for which the decay rate is 

independent of the details of the binding dynamics, has some validity. In particular, the M5 scaling 

with the Cabbibo vertex factor as indicated in Fig. 1.3.2, is quite plausible. Strange particle decay 

rates of the order of IO-l8 GeV are expected if one scales the decay rates of leptons. 

In general, the nonleptonic decays of light mesons and baryons have a rather higher rate 

than would be implied by the factor shown in Fig. 1.3.2. This “nonleptonic enhancement” is not 

very well understood theoretically. We expect that it will be of less importance as the mass scales 

for the mesons and baryons increase. Therefore, we will basically evade the problem of the 

nonleptonic enhancements for light mesons and baryons and only consider it cursorily in looking 

at D decays. The enhancement can be somewhat understood as the effects of QCD. One knows 

that the QCD coupling constant “runs.” Thus, QCD effects should be large when the mass scale is 

low. Therefore, one can hope to reduce the problem by going to heavy flavors where the mass 

scale is large enough to drive the QCD coupling constant down. 

There is a topic which we will need in evaluating some of the higher level diagrams in 

heavy flavor decays which is the purely leptonic decays of pseudoscalar mesons. In particular, the 

pion and the kaon leptonic decay rates have been measured whereas the B and the D leptonic decay 

rates have yet to be measured. The diagram is shown in Fig. 1.3.3. One expects that QCD effects 
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Fig. 1.3.1 (V-A) helicity structure for the disfavored decay n- + e-v, 

e- p- d 

S 
vv u e P 

/ U 

g,sin9 

Fig. 1.3.2 Second order EW decay diagram for s + uW- where W- can virtually decay into 

quark or lepton pairs. Note the V,, - sine CKM vertex factor in s --f uW-. 
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TABLE 1.2 

STRANGE QUARK SEMILEPTONIC DECAY RATES 

DECAY DECAY 

K+ + 7r”e+v K+ + n”e+v 

KL -?, de7v KL -?, de7v 

A -+ pe-v A -+ pe-v 

c- + ne-v c- + ne-v 

z- --f hoe-v z- --f hoe-v 

R- R- -3 E”e-S -3 E”e-S e e 

r x lOI GeV r x lOI GeV 

4.2 4.2 

8.3 8.3 

2.5 2.5 

6.5 6.5 

4.1 4.1 

45.0 45.0 

G( ;I;:==$gq(e=$) 
= 2.3 x IO-l8 GeV 

19 



may be large. Therefore, one cannot expect to be able to use the simple fundamental diagram but 

have recourse to a phenomenological coupling constant. The amplitude is given below. 

a - 5 < +$ > [U;Y,,(~ - Y&] 
1.3.3 

The strong interactions are all subsumed into the pseudoscalar coupling constant fp. The 

decay rate is proportional to the pseudoscalar mass, as it must be, and also proportional to the 

square of the muon mass. This is the helicity suppression factor which we already saw in Fig. 

1.3.1. Pseudoscalar meson decays into purely leptonic final states am helicity disfavored. 

r- ~fp2Vf2M~* M 1 
r 2 

-- 
M aw 

The observed coupling constant extracted from tire pion leptonic &cay rate is roughly fx = 

138 MeV. The kaon pseudoscalar coupling constant is roughly the same as the pion coupling 

constant. As one can see from what we’ve done so far, the decay rate into purely leptonic final 

states goes as the mass of the parent, whereas the decay rate into semileptonic final states goes as 

the fifth power of the parent mass. Therefore, it is extremely difficult to measure the pseudoscalar 

coupling constant of the D and B. One needs recourse, then, to a model to estimate the 

pseudoscalar coupling constant. It will be shown that the coupling constant is important to some 

of the elements of heavy quark theory. The simplest ansatz is to assume a universal value for the 

pseudoscalar coupling constant but it is hard to attach an error to that assumption. In what follows 

we will usually assume that the B and D have pseudoscalar couplings which are equal to those of 

the pion. 

1.4 CKM Matrix 

As mentioned before, the strong eigenstates created at production arc not the same as the 

weak eigenstates and, therefore, the strong eigenstates are mixed in weak decays. The unitary 

transformation describing that mixing has already been given for the case of two generations. 

wv$(~]7 vq = (:yn; f;Bg) 1.4.1 
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Fig. 1.3.3 Second order EW decay diagram for purely leptonic pseudoscalar meson decays, 

P+~v. 
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For the case of three generations, the simplest unitary matrix has three angles and one 

phase. This is particularly fortunate because one needs a complex phase in order to accommodate 

CP violation within the Standard Model. This is far from explaining CP violation within the 

Standard Model but at least it allows for its existence. The CKM matrix itself is almost diagonal, 

fact allows us to make a which means that the mixing is not particularly large. This 

parameterization of the CKM matrix which is particularly intuitive. 

1.4.2 

The two by two submatrix of Eq. 1.4.1 is expanded using the fact that the angle 9 is small. 

The other elements will be explained and the values of those parameters given in the explanations 

which follow. The definition of the CKM matrix is given below. 

Jfi : u,pv y,$- Y5)“dmvn 1.4.3 

Recall that the CKM matrix, V, is unitary in order to suppress FCNC using the GIM 

mechanism of paired doublets of quarks. 

1.5 Semileptonic Q?j Decays 

The quark level diagrams for semileptonic electroweak decays of charm and beauty are 

given in Figs. 1.5.la and b respectively. By simple color counting, one expects a branching 

fraction into electron and neutrino of the c quark of one fifth, whereas for the b quark, the 

branching fraction should be one ninth. Some representative branching fractions for B and D 

semileptonic decays are shown in Table 1.3. One notes that for the D+, the inclusive electronic 

decay branching fraction is roughly 20%, which agrees with expectations. For the B decays there 

is a universal coupling in that the semielectronic and semimuonic decay rates are equal. The 12% 

branching fraction is in accord with our branching fraction estimate of one ninth. 
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gr*7 / 
e+ F+ u 

w 
PC 

C 
w+,’ \ v, VP z 

/ S 

e- p- z- d s 

-- 
v UC 

b 
ve v 

/ P x 
c 

swe2 

Fig. 1.5.1 Second order EW decay diagram for Q --f qW. Only the CKM favored W decay 

modes are shown. 

a. c + SW+ where Wf can virtually decay into quark or lepton pairs. 

b. b + cW- where W- can virtually decay into quark or lepton pairs. 
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TABLE 1.3 

B AND D SEMILEPTONIC 
EXCLUSIVE AND INCLUSIVE 

DECAY BRANCHING FRACTIONS 

PARENT PARENT 

D+ D+ 

DO DO 

B B 

BO BO 

FINAL STATE FINAL STATE BR (%) BR (%) 

e+X e+X 19.2 19.2 

K*e+ v K*e+ v 2.5 2.5 

e+X e+X 7.7 7.7 

K-e+ v K-e+ v 3.4 3.4 

evX evX 12.1 12.1 

PVX PVX 11.0 11.0 

D- ev D- ev 0.9 0.9 

D*- ev D*- ev 4.9 4.9 
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B(b+cev)-l/9 
I 

B(c-+sev)-l/5 
1.5.1 

The relationship of the branching fractions for exclusive and inclusive decays lead us to 

believe that simple poles contribute substantially to the decay dynamics. Therefore, a pole 

dominance model might be expected to have some validity. For example, in D+ semileptonic 

inclusive decays, the K* are prominent in the exclusive fmal state K*ev. In the case of the Do, the 

branching ratio into inclusive semileptonic states appears to be reduced from our expectation. This 

could be a nonleptonic enhancement as will be discussed later. Suffice it to say that the branchiig 

fraction into electrons for Do is suppressed by about a factor of two relative to that for D+. 

Again, for the B decays the pole dominance appears to be a useful concept. For example, 

the branching fraction of B” into D*-ev is roughly 5%, which is a substantial fraction of the 

expected 11% inclusive branching fraction. 

The momentum spectrum for semileptonic B decays is shown in Fig. 1.5.2. Recalling the 

helicity structure for muon decay, one can see that this spectrum is a typical three body leptonic 

decay spectrum in the V-A theory. The lepton would like to come out in a quasi two body 

alignment. This fact can be utilized in a “flavor tag” using the transverse momentum of the muon, 

PT, in semileptonic decays. In the figure one sees the end point for the Cabbibo favored decay, the 

sequential c + s!v decay, and the Cabbibo disfavored decay b -+ U&J. Again, this latter mode is 

also a typical beta decay three body spectrum. The expected decay rates for semileptonic decays 

are given from a simple extrapolation of the M5 scaling which we’ve discussed previously and the 

CKM matrix elements in the transition. Note a convention of upper case M for external particles, 

and lower case m for unobserved quarks. 

l-(Q + 9tv) = ;;$ 1%412 
1.5.2 

A compilation of decay rates for semileptonic decays is given in Table 1.4. The masses of 

the quarks are taken from the quarkonium spectroscopy. The muon rates and the z rates we’ve 

already discussed. Scaling over six orders of magnitude is quite adequate. For kaon semileptonic 

decays, with a matrix element 8, the agreement is also quite adequate as we’ve previously 

discussed. For semileptonic up quark decays, we’ve used the n lifetime and the rr’ semileptonic 

decay rate. The q value there is only 2 MeV, so the extrapolation is large. However, it should be 

noted that we’re scanning from B to n roughly fifteen orders of magnitude. In fact, a correct 
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treatment of the neutron is in perfect agreement with the B decay and the CKM matrix element. 

The data from Table 1.4 is plotted in Fig. 1.5.3 so as to show the M5 power law scaling and the 

good agreement over many decades in decay rate. 

For D inclusive semileptonic decays, the agreement in rate with full strength matrix 

elements of the CKM matrix is very good. This would indicate that any disagreement in 

semileptonic branching ratio most likely has to do with disagreements in hadronic rates and not 

semileptonic rates. For B semileptonic decays, the decay rate is essentially the same as that of the 

D, while the quark is more than three times heavier. Therefore, one needs to slow the B decay 

rates down by a rather small matrix element. Using t3* for the Vbc CKM matrix element, the 

agreement is good. In summary, looking at Table 1.4, and extrapolating over 15 orders of 

magnitude in semileptonic rates, both the leptons (the p and the 7) and the up, strange, charm and 

bottom quarks are in good agreement with V-A spectator diagram dominance. In fact, these decay 

rates determine the CKM matrix elements. A more detailed description of the D and B matrix 

elements using Role dominance and form factors is given in Ref. 3. 

For exclusive semileptonic decays of B mesons there are many predictions for decays to 

both charmed and charmless final states. Reference 3 provides an explication. This model 

certainly appears to work in some detail in explaining semileptonic decays. Due to the fact that the 

naive treatment given here works reasonably well, we do not go into details for semileptonic 

decays hut defer to the references. 
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TABLE 1.4 

SEMILEPTONIC DECAY RATES FOR LEPTONS 

AND HADRONS WITH MSjVQ,12 

SCALING FACTORS 

-- 
1 -+ e vevp 

c +e vevz 

1-3 pe-V= 

2+ -i 7c”e+ve 

c+ -+ n"e+v 

3+ 3 xOe+v 

2O + x-efv 

3 -3 xev 

3x10-5 

3.95 

7.4 x 10-15 

2.6 x IO-‘* 

4 x 10-S 

2.4 

2.4 

1.3 

j ,“;6”;;~; M (GeV) 

0.105 =3x 10-G 

1.78 I 4.2 

2P* = 0.0024 1.8 x lo-l4 

+ 
2P* = 0.0082 8.6 x lo-‘* 

- 0.3 5.7 x 10-4 

G-j-e 1 
- 5.0 

I 
734 @ 1 1.18 

I 

VQ4 M’IVC?~I scaling 

1 =3x10-6 

1 4.2 

1 1.8 x lo-l4 

1 8.6 x lo-‘* 

8 = 0.2 2.3 x 1O-5 

1 1.78 

I 
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2. NON-LEPTONIC B DECAYS 

In Section 1 we looked at the decays of leptons and the semileptonic decays of hadrons. 

We found that the decays were explicable in terms of the fundamental interactions mediated by the 

vector gauge bosons. However, by drawing simple spectator graphs, we found out that there was 

a nonleptonic enhancement which was substantial. For example, the square root of the ratio of the 

decay rates for a A + pn- compared to the rate A + pe-v is a factor of 28. Basically, that 

means that the amplitude for nonleptonic decay (where if you wish the virtual W goes into a pion) 

is 28 times larger than the amplitude where the virtual W (in the spectator diagram context) goes 

into an ev pair. Obviously, the spectator model for quark decays is suspect in the case of light 

quarks (up, down, and saange). Therefore, in order to build up some experience with nonleptonic 

decays, we jump immediately to the charm quark sector and examine the situation. We previously 

argued that we would be in better shape if the QCD effects which might be large were driven 

down by going to higher mass scales. We begin Section 2 with a classification of possible 

diagrams which can contribute to nonleptonic decays, other than spectator diagrams. 

2.1 Spectator, Annihilation, Exchange Graphs 

Three possible diagrams contributing to nonleptonic decays ate shown in Fig.2.1.1. They 

are called respectively spectator, exchange, and annihilation graphs. The names are obviously 

related to the topological properties of the graphs. We’ve already looked at the spectator diagram. 

We are aware that the three body decay dynamics along with the virtual W propagator gives us a 

decay rate which scales as the fifth power of the heavy quark mass. What about the exchange 

diagram? For pseudoscalar mesons the exchange diagram is disfavored by helicity because it is 

essentially the same as the diagram for n + ev. For Fig. 2.1.1 one has, for example, Do + sd 

As also indicated in Fig. 2.1.1, this suppression can be evaded by exchanging a virtual vector 

gluon. However, it costs you a power of the strong coupling constant. 

The third type of diagram is called the annihilation diagram. A Cabbiho favored graph for 

Ds annihilation into pion pairs is shown as the third graph in Fig. 2.1.1. Again this is an helicity 

disfavored graph because it is essentially a two body graph. Therefore, it will require gluonic 

effects to enhance it. What can we say about the relative ratio, for example, of annihilation and 

spectator graphs? Clearly for the annihilation graph, the partial decay rate depends on the wave 

function at the origin. The probability density has a dimensionality of one over length cubed which 

means that the ratio of the annihilation rate to the spectator rate must go like the wave function at 

the origin squared over the mass of the system cubed. 
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Fig. 2.1.1 Spectator, exchange, and annihilation decay diagrams for charmed meson decays. 

31 



I-A - n?pyo)12 

rA iy;Ji2 -- 
l-s 

2.1.1 

The wave function at the origin has a characteristic size which is set by the mass of the 

system. That mass and the coupling constant are the only scales in the problem. It should be 

familiar from atomic physics that the Bohr radius is related to the coupling constant for the mass 

of the electron, assuming QCD is analogous; 

2.1.2 

This means that in the case of a heavy and light Q?j meson state with strong QCD binding, 

the ratio of the annihilation to the spectator amplitude will go roughly as the cube of the light to 

heavy quark mass ratio and as the cube of the coupling constant. Clearly, as the mass of heavy 

quark goes up, the annihilation graph will become less and less important. Therefore, it is as 

asserted that any enhancement due to annihilation will die off for higher mass states. This occurs 

effectively because the lighter quark is in orbit around the heavy quark. Thus, the wave function at 

the origin does not increase as the mass of the heavy system increases. By the way, this argument 

also shows that the annihilation diagram will indeed be important for light mesons where the mass 

ratio is effectively one and where the strong coupling constant is also large at those low mass 

scales. This appears to be validated in the sense that we know we have a nonleptonic 

enhancement, say for A decays, of a factor of about a thousand in rate, whereas the difference 

between D+ and Do lifetimes is only a factor of two. 

Therefore, we expect that we will be able to simply assume spectator dominance in 

studying B decays. Recall that in a pure spectator model the semileptonic decay rate would be the 

same, for example, for all charmed particles and, indeed, this is what one observes for the D+ 

and Do. However, there is a factor of two difference between the total decay rate for D+ and Do 

which leads us to believe that there are other quark diagrams which are important in the 

nonleptonic decays. There is indeed a nonleptonic enhancement although it is sharply reduced 

from what is seen in strange particle decays. 
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2.2 Spectator Amplitudes 

From now on we will assume, based on the arguments given above, that for B and D 

decays only spectator amplitudes are important. However, one should note that there are two 

topologically different spectator diagrams which we will call “exterior” and “interior.” These 

diagrams are shown in Fig. 2.2.la and b. Note that in the exterior diagram the colorless virtual W 

is allowed to decay into three possible ud color singlet final states. In contrast, in the interior 

diagram, in order to form colorless final states, only one of three possible virtual W decays is 

allowed. Therefore, the interior diagram is suppressed by a factor of one over the number of 
colors NC with respect to the exterior diagram. However, as shown in Fig. 2.2.lc, the interior 

diagram can avoid the color suppression factor by the initial exchange of a gluon. The color 

suppression factor is evaded at the cost of a factor of the strong coupling constant in the amplitude. 

However, this gluon can be quite soft. Therefore, a,(~*) for that gluon may “run” to large values. 

Let us practice by first looking at nonleptonic D &cays. The reason to start with D decays 

is that much more precise data arc available at present in the charm quark systems than in the b 

quark. First let us write down a phenomenological Lagrangian for the system. In this case one 

uses the fact that the second order decay with an intermediate W boson effectively happens at a 

single space time point with an effective coupling constant, G, that has dimensions. This is the 

effective four fermion interaction. For the purposes of studying D decays, it is perfectly sufficient 

to use an effective interaction. 

= ~vcsv~(sc),(Ed)d), Jz 
HI = -$VJ$[u+O+ +a-O-1 

2.2.1 

0, = (sc)L(iid)L f (sd),(iic), 

Note that in these equations one has written down the currents for the active quarks in the 

decays and rearranged them into two operators corresponding to exterior and interior diagrams. 
The operators O+, O- can be read off from the quark level diagrams given in Fig. 2.2.la and b. 

One then allows for phenomenological parameters involving QCD and gluon emission and fits the 

D decays for those parameters, a+ and a-. Without QCD corrections, a, = a- = 1. 
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a. “Exterior” decay diagram. 
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r = (2 a+2 + a-2)rn, To = Semileptonic Rate 

H, = $‘,,V~ [(a+ ;a-)(Bc)L(Pd)L + (=+ ;a-)(a)L(Ec)L] 

2 ~V,v&G4LmL +%wd),(a,] 
HI’ q 5 V,,VL [ aI’ + %‘(~d)(~c)] 

2.2.2 

One should note that given this phenomenological form, the Df and Do widths need no 

longer be the same because topologically D+ and Do have different “exterior” and “interior” 

topologies. In fact, one can imagine interference between the interior and exterior graphs and, 

therefore, a relative suppression of the Do with respect to D+. Using simple color counting, one 

gets an estimate for the two phenomenological matrix elements that arc fit for, given the values for 

a+ and a- that arc calculated in QCD. 

NoQCD: a+=a-=l,at=l,%=O 
I 

2a, = (1+ &)a+ + (1- &)a- = “Exferior” 

2a2’ = (1 + ~)a+ - (1 - .$z.. = “Znrerior” 

QCD:~-l/N~-1/3,a+-O.7,a~-2.0 

al - 1.3, a, - -0.6 

al ’ - 1.1, a,’ - -0.2 

2.2.3 

In performing the fit, as done in, for example, Ref. 3, one has the amplitude for the decay 

D goes to Krr. 

a@ -3 KK) - (KIJ&) (7plo) 

- (K~J,$‘)fzqp 

hf, 

2.2.4 

The amplitude is assumed to factorize, and in the factorization, one needs the pion decay 

constant and some assumption as to the form factor for the D transition. The assumption which is 

made is that the form factors are pole dominated. As mentioned before, there is some 

noncompelling evidence for the dominance of poles in D semileptonic decays. 
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Fig. 2.3.2 Spectator diagram for Df decays. 

a. “Exterior” Df + K”nrt diagram. 
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2.3 Nonleptonic D Decays 

The formulas shown in Section 2.2 have been used in Ref. 3 to fit all of the observed 

nonleptonic D decay modes to two parameters, the amplitude for the interior graph and the 

amplitude for the exterior spectator graph. For example, in Fig. 2.3.1, one sees the spectator 

diagrams for Do decays into K-x+ which is an exterior diagram and into K”no which is an 

interior diagram. In contrast, the spectator diagrams for D+ decays are shown in Fig. 2.3.2. There 

is an exterior diagram for D+ to K’n+ and a topologically different interior diagram for D+ to the 

same final state. This means that one has the possibility for D+ interference within the spectator 

model. 

As mentioned before, the possible interference which one can see in Fig. 2.3.2 means that 

it is plausible that the spectator decay rates for D+ and Do can be different. The results of a tit for 
the parameters ot and % in nonleptonic D decays are shown in Fig. 2.3.3. The fact that these two 

numbers are a reasonable representation of all the data tells us that the spectator model with the 

factorization assumption given in Eq. 2.2.4 is a reasonable phenomenological representation of the 
data. Note that both the matrix elements and the CKh4 elements, V,, and V,,, are fit. An input 

which is necessary is the pseudoscalar decay constant. Basically, one assumes that all the decay 

constants are the same. This is certainly very nice phenomenology in that one can explain within 

its context all D decays in terms of spectator diagrams and two numbers. 

2.4 Nonleptonic B Decays 

The nonleptonic spectator diagrams for B decays are essentially exactly the same as those 

for charm decays except that the virtual W can decay into a ud or a cS pair since both are Cabbibo 

favored and there is enough mass in this case to make the c$ pair kinematically allowed. We 

again ignore exchange and annihilation graphs on the basis that the nonleptonic enhancement in D 

decays is already small and that we expect a scaling as the cube of the mass of the heavy system. 

The interior spectator diagram, where the W goes to a CT pair, is shown in Fig. 2.4.1. One 

interesting feature of this particular diagram is that both the B and the B can feed the final state 
YK,. What’s interesting about that final state is the possibility that B and B effectively mix by 

going through the common intermediate states or that they can interfere giving a rise to CP 
violation or asymmetry in the exclusive decay Bd + YK,. Since the same final state is fed by 

both B and B, it is possible that there is such a CP violating interference effect. 

The center of mass momentum for such a two body final state is easy to calculate and 

comes out to be; 
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Fig. 2.3.3 Nonleptonic D decays; data and the fit using the BWS model for allowed (V,,) and 

suppressed (Vcd) decays. 
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P’(B -+ YK) = 1.68 GeV 

$f,Qf$]/2MB . 
2.4.1 

Data from e+e-colliders on the momentum distribution of inclusive y decays are shown 

in Fig. 2.4.2. Note that the existence of high momentum in the inclusive spectrum indicates that 

there may be a large fraction of exclusive two body like final states in the w inclusive data. Again, 

pole dominance leads us to believe that the sd, going along with the w, will be dominated by K 

and K* poles. In fact, data from e+e-colliders indicates that the inclusive branching ratio into t+r 

plus anything is about 1% for B” and, of that l%, about 37% is due to YK *. So, in fact, the two 

body pole dominance seems to also be a phenomenological fact of life in the B system. Again, in 

Ref. 3, a fit to all nonleptonic B decays was done. For example, in Fig. 2.4.3 one has spectator 

diagrams for Bd into D+n- and Bd into Dono which have exterior and interior graphs 

respectively. The results of such a tit are shown in Fig. 2.4.4. As with the D decays, the entire 
nonleptonic data set can be represented by two numbers, at and $. 

In fact, there is perhaps slightly more information than that when one compares the results 

of the tits for B and D decays. 

D: al’ -1.3 a2’---0.55 

B: a,’ -0.9 u2’ --0.2 

Note that the D decays have a larger absolute value of a, than the B decays for the best fit. 

This in some sense is plausible because the amplitudes can be QCD evolved from the D to the B 

mass scales. In fact, the naive estimate via color counting can be thought of as the expectation for 

infinitely massive quarks. Comparing Eq. 2.2.3 and 2.4.2 one can see that the B decay ftt values 

are not terribly far from the asymptotic theoretical estimates. Therefore, as far as the nonleptonic 

decays go, one appears to have a situation where spectator diagrams dominate. This conclusion 

follows from looking, in the progression from strange to charm to beauty decays, at the size of the 

nonleptonic enhancement. Futhermore, one has a phenomenological theory with only a few 

parameters which gives an “adequate” representation of the data 

2.5 Penguins, Loops, and Rare Decays 

First, let us consider some of the decays which are rare but are not of higher order. The 

purely leptonic D and B decays have yet to be measured. The limit, for example, for the 

D* + p’+v branching fraction is 7 x lOA. One recalls that the purely leptonic decays go like the 

first power of the mass of the heavy quark, whereas the semileptonic rate goes as the fifth power. 
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Therefore, it will be extremely hard to observe the purely leptonic decays and extract the decay 

constants. This is unfortunate because those decay constants arc important phenomenological 

inputs. In particular, there are higher order diagrams which are used in the Standard Model to 
estimate the mass and decay matrices relating to mixing and CP violation which depend on fn and 

fD. 

Another class of rare decays are the Cabbibo unfavored charmed decays. For example, the 
branching ratio for Do + K-e+v is 3.4%, whereas the branching fraction into Ic-e+v is 0.39%. 
The absolute decay rate tells us that the CKh4 matrix element V,, is at full strength or roughly 

equal to 1, whereas the matrix element V,, is roughly equal to B or one fifth. Measurements of 

this type define V,,. Therefore, V,, V,, V,,,V,, follow from n, K, “D + n” and “D + K” 

decays respectively. The B decay rate yields Vcb , so that 5 of the CKM matrix elements arc now 

defined. 

There is another category of decays having to do with higher order diagrams for processes 

which are forbidden in lowest order, for example, flavor changing neutral current, FCNC, 

processes. We’ve already discussed how the GIM mechanism kills FCNC in lowest order. In 

order to begin this study, we go back to Feynman’s treatment of higher order effects in the 

propagator. The photon loop diagram used in that study is shown in Fig. 2.5.1. This virtual 

photon is reabsorbed by the elecuon and it causes a modification to the simple electron propagator. 

The vertex and propagator factors for Fig. 2.5.1 can easily be written. 

2.5.1 

One can expand the revised propagator assuming a modified mass term and compare that 

to the expression given in Eq. 2.5.1. The idea is that the virtual loop causes a change in the 

fermion self energy and thus, in the mass. 
1 1 

^ I l SM l -+... 
P-MO P-MO (p-MO-&V) p-M, 

2.5.2 

One can see that the mass shift for the electron is proportional to the fine structure constant, 

and an integral over all the internal loop momentum. Now in Feynman’s treatment, one attempts 

to do the loop integral and requires that the external electron lines be on shell. In the limit of large 

44 



4 
,- 

P / \\\ P 

e- 
1 L 

e- 
e P-4 e 

Fig. 2.5.1 Photon loop diagram used in the study of the behavior of the electron propagator in 

higher order QED. 

d 
b / C 

gwe2 

w,>d \ 
b 1 \ 1 S 

gw t gwQ2 

Fig. 2.5.2 Comparison of spectator decays for normal and rare “penguin” processes 

a. b 4 c(Cd). 

b. hi w-r--tsy. 

45 



q2, the integral will give aouble. It turns out to be logarithmically divergent. It is then modified by 

a cutoff factor, with a cutoff parameter h, which gives one a mass shift as shown below. 

6M --f apgq2MJ 

-[k/(4*4*)] 

E=3a[3en(M,/a)2+3/4] 

2.5.3 

It is typical of this sort of diagram that one has a mass shit which depends linearly on the 

coupling and logarithmically on the square of the mass of the system. An application of such a 

loop term occurs in looking at rare B decays in flavor changing neutral currents. What one 

compares is the standard spectator decay to an internal W loop which allows the external decay 
b + sy, or a FCNC in higher order. These diagrams ate shown in Fig. 2.5.2. 

Given the discussion of the propagator loop for electrons, it’s clear that having a large value 

of the internal quark mass, and in this case the top is available, will help enhance the FCNC 

amplitude. The question is whether the enhancement is large enough to be useful. One can read 

off the amplitude factors and compare the two diagrams given in Fig. 2.5.2. One makes an 

estimate of the CKM matrix elements and finds out that even though the top is not strongly 

coupled to the s, one is fortunate in that the b decay itself is quite slow. Recall that the B lifetime 

has a 614 factor in it. This is the factor which we already saw in comparing the semileptonic decay 

rates of all the different quark systems. The fact that the main spectator diagram is so slow means 

that the FCNC is more nearly comparable to the main decay and is, in fact, not particularly rare. 

This is a general property of the B system in comparison to the K or D systems; “rare” decays are 

not “rare.” 

r(b -+w) _ a 
I-(b + ciid) v,,*v 2 ud 

2.5.4 

4 

-a 

[( )I 

-3- 

MW 
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In this case the cutoff parameter h is supplied by the fact that the heavy quark masses cut 

off the available internal momentum of the loops. A “real” theoretical estimate, with QCD 
corrections, is more likely to be that the branching fraction of b + syis 2 x 10m3 and that the 

branching fraction of the B meson to a Ky is 1 x 1O4. Still, these are not enormously rare decays 

and may be measured with a large enough sample of B’s In particular, a simpler signature would 

be that the photon shown in Fig. 2..5.2b, virtually decay into a pair of muons or electrons. In this 
case, the FCNC is B -+ Kp+p- or B -+ Ke+e-. Obviously, looking at the diagram, the decay 
gives information on the CKM matrix elements V,, and V, because the top quark will dominate 

in the virtual loop. This is a FCNC search which has a spectacularly good signature, although the 

rates are not terribly compelling. 
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3. PHENOMENOLOGY FOR CP VIOLATION 

The purpose of this Section is to sketch out the phenomenology for two level quantum 

systems which are in communication, which means that there exist amplitudes connecting the two 

states. This phenomenology is applicable to neutral mesons containing strange quarks, charm 

quarks and b quarks. An attempt will be made in this Section to carry through a general 

phenomenology that only makes approximations appropriate for the s, c, or b mesons as 

necessary. The reason for adopting this approach is that the approximations appropriate to 

different systems are, in fact, different. Therefore, an intuition which one has built up in the K 

system does not trivially carry over to the B system. 

3.1 Mass, Decay Matrix 

Let us consider the situation where the weak Hamiltonian is a small perturbation on the 

strong and electromagnetic interactions. This is obviously a good assumption for the systems 

we’re dealing with. This particular phenomenology has been in existence for about 30 years and 

was first applied to the kaon system. Assuming that the weak Hamiltonian is a perturbation, one 

can expand the S matrix in powers of the perturbative Hamiltonian. 

3.1.1 

The second order perturbation can be sandwiched with a complete set of eigenstates of the 
unperturbed Hamiltonian Ho. The causal displacement E can be broken into two pieces, the 

principle value, which implies off shell transitions, and a 6 function which corresponds to on shell 

decays. This leads to the transition matrix, T, given below. 

T=H,+PZHw’n><n’Hw-ix~G(Mo-E,)Hwln><nlHw 
” M,-En n 

3.1.2 

A graphical representation of the second order expansion is given in Fig. 3.1.la. For 

reference purposes, Fig. 3.1.lb has the Standard Model expansion of the general intermediate 

states implied by the box diagram. For future reference, the vertex factors and the exchanged 

particles are given in that Figure. For the on shell final states, the 6 function in Eq. 3.1.2 can be 
replaced by the density of final states, p,,. The transition matrix can then be broken into two parts, 

the mass matrix and the decay matrix. 
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IO> 

%T q”q =wvq ” Q 

Fig. 3.1.1 Diagrams for 10 > tf 18 > transitions. 

a. General second order EW diagram. 

b. The “Box Diagram” realization of a. with vertex factors shown explicitly. 
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T=M-iiT/2 

M=Hw+f,~Hw/n>cnlHw 
” (MO -En) 

3.1.3 

r = 271Cp,H+ >c nlHw 
” 

The mass matix has terms in first and second order corresponding to virtual transitions 

between states. The decay matrix has a density of states factor appropriate to on shell decays. 

Now, in fact, in the perturbation formulas, the transition operator T is the time development 

operator containing pieces corresponding to level shifts and decays. The definition of the mass and 

decay matrices is such that the mass matrix corresponds to a phase for the wave function whereas 

the decay matrix corresponds to a probability density which decays exponentially with time and 

having a characteristic decay width r. 

dy/Jt=-iTty=-(lY/2+iM)y 

142 = ,-II, y = e-w2+iM)r 
3.1.4 

In what follows we’ll use as basis states the strong eigenstates, which are assumed to be 

orthogonal. We’ll also assume that the perturbation Hamiltonian obeys CPT invariance which 

leads to the following relationships: 

/0>,1~>basisstates 

rll = rz2 E y 
r12 = G 
M,1=M22=Mo 

Ml2 = Mil 

3.1.5 

Basically, these relationships mean that particle and antiparticle mass and lifetime are the 

same. That’s certainly familiar as a consequence of the CPT theorem. Using as basis states the 

saong eigenstates, it is straightforward to construct the CP eigenstates of the system. There is a 

unitary transformation, Ucp, which transforms from strong eigenstates to CP eigenstates. 
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3.1.6 

In the strong eigenstate basis, which is a complete set, one can expand any arbitrary wave 

function. The time development of that wave function in that basis is given below. 

3.1.7 

Having developed the formulas to this point, it is clear that we now need to solve the 

eigenvalue problem. 

3.2 Eigenvalues and Eigenvectors 

In general, the eigenvectors of an operator in quantum mechanics are defined such that the 

operator operating on the eigenvector returns the eigenvector itself times some number, the 

eigenvalue. In order for that to be true, the secular equation needs to be satisfied. There are also 

two invariants in the problem. The trace of the operator (in any representation using a complete set 

of wave functions) is the sum of the eigenvalues, while the determinant of the operator is the 

product of the eigenvalues. 
oy=ay 

(o-a0v=o 
lo-arl=o 3.2.1 

TrO = CAi 

DETO = zli 

In Eq. 3.2.1, the operator is represented by 0, the eigenvector by the wave function w, and 

the eigenvalue by h. The operator is Hermitian. That requirement assures that the eigenvalues are 
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real. The eigenvalue equations are a set of linear homogeneous equations. Thus, the secular 

equation needs to be true if a nontrivial solution exists. 

Specializing to the case of the transition matrix and labeling the two eigenvectors and 

eigenvalues with a subscript j, one finds that the transition matrix eigenvectors propagate 

diagonally in time with the eigenfrequencies appropriate to the energy eigenvalues. 

3.2.2 

Note that M and r are Hermitian operators but T is not Hermitian because probability is 

not conserved. Decays exist, and the wave function squared is the probability density which must 

decay exponentially in time. We will use the fact that the energy eigenvectors evolve diagonally in 

time when studying the time dependence of a system containing mixtures of the strong eigenstates. 

The secular equation in the specific case of the transition matrix, written in the strong eigenvector 

basis, is given below. 

A-aj p2 

q2 A-aj = 
0 

r/2+iMm ,“z 
[ 

p,’ 

A= y/2+iM, 

p2 =r12/2+iM12 

q2 =r;, / 2+iM;* 

3.2.3 

p* +q* =Re rt2 +2iReMr2 

p2-q* =iImrt2-21mMr2 

These equations follow from the time development equation given in Eqs. 3.1.7. The 

solution of the secular equation is straightforward and the eigenvalues are easily determined. 
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ai = Afpq 

aj=~+ihfo+~ 

al -1~=2Jpzq2 

I:: =Jgqq,* (PI0 ’ *qlfi >I 3.2.4 

u=&+,& :: -“4 ( 1 
The eigenvectors in the strong eigenstate basis are given in Eqs. 3.2.4 along with the 

diagonalizing transformation which goes from the strong eigenstates to the weak eigenstatcs. Note 

that the diagonalizing transformation collapses to that appropriate to CP conservation given in Pqs. 

3.1.6, if p and q are both real and equal to 1. 

IfCP,p=q=l 

rmr12=ImM12=o 

(r1,2kp=w12 

W1,2h =% * 42 

m=r,-r,=2r,, 
AM=M1-M2=2M12 

3.2.5 

Note from Eq. 3.2.3 that in the case where CP is conserved, the imaginary parts of the off 

diagonal elements of the mass and decay matrix are equal to 0. In that case, the decay rates and 

masses are such that the difference in decay rates is just the off diagonal element of the decay 

matrix while the mass difference is, analogously, simply the off diagonal element of the mass 

matrix. Note, in this case, that the eigenvalues are real for the mass and decay matrices. It is 

useful to go through the CP conserving case because, as we will see, it is intrinsic to the Standard 

Model that CP violation is small. Therefore, the approximation that it is vanishing is sometimes 

quite useful. 

3.3 The E Parameter 

If indeed CP violation is a small effect, then p and q are roughly real and equal to 1. One 

expects that deviations from the values appropriate to CP conservation are small and should be 

characterized by a small parameter. In the literature, this is the E parameter which is familiar from 
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usage in the kaon system. Therefore, let us consider the case where CP violation exists but is in 

some sense small. In that case Eqs. 3.2.4 for the weak Hamiltonian eigenstates becomes Eqs. 

3.3.1. 

IL-& [Cl + &)I0 > k(l- &)I5 >] 

< 112 >= 2Re& 

=(IP12-142~/(lP12+l~12~ 

3.3.1 

Note that, in this case, the weak eigenstates are not orthogonal whereas in the case of CP 

conservation they would be. Therefore, it is important to realize that the basis states, the 

eigenstates, in the presence of CP violation are no longer orthogonal; whereas, by definition, the 

strong eigenstates are an orthonormal basis set in two dimensions. So far, what we’ve done 

involves no approximations. One can now make the approximation that the E parameter is small. 

3.3.2 

In that case, there is a simple relationship between the small parameter E and the imaginary 

parts of the mass and decay matrices (see Eq. 3.2.3). 

3.3.3 

We note that CP violation is due to imaginary elements in the mass and decay matrices as 

we have seen previously. CP violation, therefore, in the weak eigenstates is defined by the E 

parameter. Looking at Eqs. 3.3.3, it’s clear that the phase of E depends on the relative size of the 

mass and decay matrices and on the relative size of the real and imaginary parts of the eigenvalues. 

We’ll see that the answer in the case of the K system is rather different than that for the B system. 

Using Eqs. 3.3.1 and the defining equations for the eigenvectors, Eq. 3.2.4, one can get an 

expression for the ratio of q to p in the case where the off diagonal elements of the mass matrix are 

much larger than the off diagonal elements of the decay matrix. 
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l--I ;;z =14/L4 
= q2/p2 r-7 

-1 

3.3.4 

Note that, in this case, the ratio of q to p is a complex number of modulus one. Looking at 

Eqs. 3.2.5, one might expect that if the mass matrix elements arc larger than the decay matrix 

elements, then the mass splitting is much larger than the splitting in decay widths. Such a situation 

might obtain in the case of B mesons where there is lots of phase space available and where 

different CP eigenstates are typically characterized simply by a pion mass difference. The situation 

is much different in the kaon system where ~the CP eigenstates are the two pion and three pion 

states and the available energy for two pion states is much larger than that available in three pion 

final states. For example, the sum of the three pion masses is about 0.42 GeV with a kaon parent 

of only 0.49 GeV. This simple kinematic coincidence is responsible for the fact that the CP 
eigenstates, Ks and KL. have decay rates which differ by a factor of 580. In the case of the b 

quark, one has a system with 5 GeV available which is an order of magnitude larger than the q 

value available in the kaon system. Hence, one expects that the difference in decay rate between 

CP odd and even states would be rather small. That being the case, one expects that the mass 

difference between the CP eigenstates will be much larger than the decay rate difference. This is 

one of those situations where the K and the B system, although conceptually the same, differ 

strongly because of the masses and the available q value. 

In the case where one neglects the off diagonal decay matrix elements, the ratio q/p is a 

pure phase and E, for example, for the b system, is purely imaginary (see Eqs. 3.3.1). If one 

makes the approximation that l-12 is small with respect to M12, one can expand the q/p ratio and 

keep the first order term. 
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Given the next order correction, one can look at E and see that a consequence of keeping the 

correction is that E for the b system picks up a small real part. 

Iq/pl=Iei-1-2ReE 

4Re.c-[Im(T12 /M12)1 
3.3.6 

Note again that one needs to be careful. Remember that, for example, for the K system, 

the phase of E is 45’ and it is in no way a purely imaginary number. That’s mirrored in the fact 

that the mass difference for the kaon system is comparable to the decay rate difference which, as 
we said, is dramatic for the KL-Ks system. 

3.4 Time Evolution of the States 

In this Section, we begin the study of the general time evolution of the two level system in 

the presence of CP violation. The eigenvalue problem yields eigenvectors and the vacuum 

eigenstates of the T matrix propagate diagonally and independently. The expression for these 

eigenstates in terms of the strong eigenstates has been given in Eqs. 3.2.4. The inverse 

relationship between the eigenstates of the T matrix and the strong eigenstates is given in below. 

IO > J&g ; (II> +I2 ‘1 
p>= 2 

[ 1 
l 
4 

(I1 > -12 >) 
3.4.1 

Now suppose, for example, that one produces the state 10 > at time, t = 0, 0 in a strong 

interaction production process. In that case the initial state can be decomposed into weak 

eigenstates. 

ITi >= 0 

3.4.2 

By construction we know that the weak eigenstates evolve diagonally, with a time 

dependence defined by the eigenvcctors of the weak Hamiltonian. 
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1(r) >= e-“~‘~l(o) > 

b(Z) >= e-Q/2(0) > 

3.4.3 

In order to find the strong eigenstate content of the system at any given time, one uses Eq. 

3.4.1. 

p(t)>= @j7$)(,l(r)>+12(r)>) 

P(Z) >= p’10 >+e-y43 >] 

p(t) >= ~[~],e”l’,O>-e-“~‘~O >] 

3.4.4 

A schematic representation of the above equations is shown in Fig. 3.4.1 as an aid to 

visualization. One can follow the path in Fig. 3.4.1 and simply multiply out the indicated factors. 

So far, we’ve not made any drastic approximation. At this point one may specialize to the 

B system. We will assume that the decay rates of the weak eigenstates are the same so that the 

difference between decay rates is zero. 

AM=Ml - M2,AIk o,r, = r2 = r 

2M=Ml+M2 -2Mo 

IO(r) >=e-(i+N)t p isin(AMt /2)10 > 
0 4 

3.4.5 

One can easily go through exactly the same exercise for the situation where one has a state 

I- O > made at time t = 0 and by this proceed to the general case. 
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-h,t 

-e,--1 

1, l/P 

IO> 

l/q 

2> F l/P IO> 

-l/q 

Fig. 3.4.1 Schematic representation of the decomposition of a state, IO >, produced at 

t = 0. The state propagates in time as states II> and 12 > and a second 

decomposition into states 10 > and 10 > at time t is then made. 
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IO(~) >= f+(r)lO > + ; (1 f-(r)lO > 

pm >=(,),,,,10 > +f+(t$ > 

f+W = e 

-(~+ihf)I 
cos(AMt / 2) 

f-(t) =ie 
-(G+iM)r 

sin(AMr / 2) 

3.4.6 

Therefore, it is clear that a general property is that the IO > and 10 > content of any state 

oscillates in time due to the fact that the weak eigenstates contain different mixtures of the strong 
eigenstates IO > and 10 >. Th’ is situation is very analogous to the situation of having linearly and 

circularly polarized light, decomposing an initially linearly polarized state into circularly polarized 

states which propagate and therefore mix, and studying the linear polarizations as a function of 
time. Using the simplest example of the state which is purely 10 > at t = 0, one can square the 

wave functions given in Eqs. 3.4.5 and get an expression for the probability, as a function of time, 
to observe the state IO > and the state 16 > having produced a pure IO > state at t = 0. 

r(f) = e-“(l+cosAMr)/2 

II 

2 
I;(f) = eerr I! (l-cosA!Vfr)/2 

4 

r(t) +I;(r) = e-” 

3.4.7 

Note that the sum of the probabilities displays a simple exponential decay as might be 
expected. The probability to see a ITi > state as a function of time vanishes at t = 0, builds up and 

exhibits oscillatory behavior. In contrast, the 10 > state has a probability 1 at t = 0, but decays, in 

time, and exhibits oscillatory behavior. In particular, at characteristic values of the time, there exist 

zeroes in the probability. Note that the scale for the time is defined by the competition between 
decay and oscillation. Therefore, in order to simply observe this oscillation of the IO > and 10 > 

states, one needs a mass difference which is comparable to the decay rate, AM / I - 1. 
The probabilities given in Eqs. 3.4.7 are graphically displayed in Figs. 3.4.2 and 3.4.3. In 

Fig. 3.4.2, one sees the behavior of the probability to find state 10 > as a function of time having 

produced a state IO > at t = 0. Obviously, that probability has a limit that it be one at t = 0. What 
AM 

is plotted are curves for different values of the characteristic parameter -. One can see that 
r 

59 



GAMMA(t) 
DELTAM/GAM = 0.5,1,2 

TIME IN GAMMA UNITS 

Fig. 3.4.2 r(t) E r[O(t)] as a function of time for M/T = 0.5, 1.0, 2.0. 
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Fig. 3 .4.3 F(t) q r[;d(t)] as a function of time for AM / r = 0.5, 1.0,2.0. 
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there are changes in the location of the oscillatory zero which occur around the overall exponential 
decay. For comparison in Fig. 3.4.3, one sees the probability for observing the state 10 > having 

produced the state 10 > at t = 0. Again, the obvious boundary condition is that this probability 

vanishes at t = 0. Looking at Fig. 3.4.3, it is clear that the probability rises and then exhibits 

oscillatory behavior around a decaying exponential. Again, curves for the values of - 

1.0 and 2.0 are shown. 

AM 
r 

of 0.5, 

We’ve gone fairly hurriedly over this Section on the time development of the states. The 

assumption is that the very similar analysis of KS and KL in terms of K” and K” is well known 

to practitioners of particle physics. The major difference, as we said before, is that in the K system 

the CP eigenstates have large decay width differences. In this Section, by comparison, what has 

been assumed is that the decay rate differences am small on the scale of the mass differences of the 

CP eigenstates. 

3.5 CP Violation Asymmetry 

Having looked at the time development of the states, we are now in a position to advance to 

looking at the temporal characteristics of CP violating asymmetries. In this Section, we will 

proceed entirely phenomenologically with no particular guidance as to possible magnitudes or 

sources of the CP violation. If CP is conserved, then the partial decay rate of a state 10 > into final 

state If > is equal to the decay rate of the state 18 > into the conjugate final state If >. Therefore, 

CP violation would be measured by a difference in those decay rates. This argument leads us to a 

definition of a time dependent asymmetry indicating CP violation. 

A(r)={ [ 
r O(r) -3 f] - qow + r]} 

{r[w -+ fl+ r[W + i]} 
3.5.1 

Now if both If z and Ij > final states can be reached by 10 > and 16 > and if If > and 

Ii > are CP eigenstates, then there is a common final state. The mixing which we have already 

discussed implies an interference in the final states and, therefore, a CP violating asymmetry. 

Using Eqs. 3.4.6 for the amplitude of state 10 > as a function of time and state 10 > as a function 

of time, one can sandwich those with final states If >. The amplitude for the partial decay rate of 

the state 10 >, decaying to state If > as a function of time, is then; 
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< flO(r) >= emc’+N1t[, fl0 > (cosy)+ ;< f/O >i(sinF)] 

I-[O(r) + f] = e-- I< fl0 >I 2 
co82 z + Q<flG>2sin2 e 

( 1 ! 1 

-2Im [;z +jc~&]sin[~~ 

3.5.2 

If only one amplitude contributes to the transition, then overall CPT conservation implies 

the following. 

I< fl0 4 = I< + >I 

)<-fIO>I = /<f/q 

3.5.3 

In addition, if the final states themselves are CP eigenstates, then there is a relationship 
between the transitions to the If > and 17 > final states. 

CPlf> + > 

<fp > =*cflij> 
35.4 

Now recall from Section 3.3, in particular Eqs. 3.3.4, that the ratio q/p is a complex 

number of modulus one for the case of the B system (by assumption). In that case, the following 

quantity is also a complex number of modulus one. 

q < fl0 > _ q < fp > _ c fl0 > 

;<flO>-p <flO> - <flO' II 

=r ;;>I 

; j,O>; 

=I<fP>I 
=l 

3.5.5 

In this particularly simple limiting case, Bqs. 3.5.2 collapse into a rather simple form. 
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T[O(r)+ f]=eert[< flO$[ l-Im(~~$:),in(AW)] 

A(Q=-h Y<flO> 

t 1 P < fl0 ’ 
sin(AW) 

a= q<flG> 

i 1 P < fl0 > 

3.5.6 

r[O(t) + f] = e-“I< JO >I’[1 - Imasin(AW)] 

The asymmetry then has a simple time dependence, with an amplitude defined by the 

imaginary part of the ratio of decay amplitudes. This simple form again indicates that the existence 

of imaginary amplitudes drives the CP asymmetry. The situation for decays to CP eigenstates is 

that the CP violating parameter seen in the asymmetry as a function of time is a pure phase. It has 

two sources, the mixing, which is indicated in the q to p ratio from the mass matrix, and the 

decays, indicated in the ratio c f 16 > / < f 10 > in the decay amplitudes. 

A plot of a possible asymmetry is shown in Fig. 3.5.1, which shows the difference in 

decay rates for the state 10 > to final state 1 f > and state 16 > to final state If > as a function of 

time. The plot assumes that the imaginary part of the amplitude is 20% and that the mass 

difference is 0.5, 1.0, or 2.0 times the common decay rate r. Obviously, the maximum 

modulation of the decaying exponential occurs when the sine goes through 90”. The asymmetry at 

those angles becomes maximal. Clearly, the asymmetry oscillates sinusoidally with time and has 

a 0 when AMt is equal to 0 or z[. This means, of course, that if one made such a measurement, it 

would allow one to extract the modulus of that asymmetry. Since this is an imaginary amplitude, 

it obviously gives us a measurement of a CP violating parameter. 

In the next Section, we will discuss our expectations for the magnitudes of potential CP 

violating parameters. Suffice it to say that in exclusive final states in B decays, the CP asymmetry 

can reach large values (tens of percent). In particular, the decay that was discussed in Section 2, 
Bd -+ ‘I’K, is topologically accessible to both Bd and &. Thus, one has a CP eigenstate for the 

final state which is accessible to both Ed and Ed. Therefore, one can potentially generate a CP 

violating asymmetry. In fact, the estimated asymmetry is at the 20% level. 
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Fig. 3.5.1 Decay rate difference, r[O(t) -+ f] - r[&t) + f] as a function of rt for AM / r = 

0.5, 1.0, and 2.0. Ima is 0.2. 
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4. CP VIOLATION AND MIXING 

In this Section we attempt to go beyond the purely phenomenological description of CP 

violation in the B system and connect asymmetry parameters and the like to more fundamental 

quantities such as CKM matrix elements. 

4.1 Time Evolution and CKM Phases 

For now, in this Section, let us assume that the off diagonal elements of the mass matrix 

which are responsible for mixing the IO > and Ii5 > states are driven by the box diagrams which 

have been shown in Fig. 3.l.lb. Let us further assume, and we will establish this later, that the 

heaviest quark in the internal box loop is the one which dominates the amplitude. Let us also use 

the approximate values of the CKM matrix given in Eqs. 1.4.2. In explaining or predicting the 

results of a CP violating asymmetry experiment, what we are interested in is the phase of various 

mass and decay matrix elements. It will be sufficient to use the assumptions just given to read off 

the phase of the mass matrix elements. 

4.1.1 

Recall that the Ml2 element is that matrix element which, in the strong eigenstate basis, 
connects the IO > and 16 > states. Therefore, it is effectively a AR = 2 transition. Since those do 

not occur in the Standard Model to lowest order, we require two aansitions. The simplest diagram 

that is possible is just the box diagram which has been given in Fig. 3.1.1. Given the CKM 

parameters described before and written down, one can trivially read the q/p ratio for the two 
neutral B mesons, the Bd and the B,. 

0 
4 V rd _ c7-e 2i@d 

p Bd vtd 
4.1.2 

Clearly, the Bd has a phase given by the td element of the CKM matrix while the Bs has a 

q/p parameter given by the ts element of the CKM matrix. Since that latter element is real, q/p for 
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the Bs is a real number. We said before, in the discussion of E for the B system, that q/p for Bd is 

a complex number of modulus one. Comparing with Eqs. 3.3.6, it is clear that Eqs. 4.1.2 are 

consistent with the expectation that E is putely,imaginary parameter for the B system. 

What about the phase for the fmal states? The transition is b goes to q + virtual W which is 
determined by the vertex factor Vbq. This vertex factor can also be read off our representation of 

the CKM matrix. For b to c transitions this parameter is one, whereas for b to u transitions, it is a 

complex number of modulus one. 

<f/ii > 

<flO' 
'V&IVb, 

=l,b+c 

= e2i6, b -+ u, I& = -6 

4.1.3 

Therefore, from our previous discussion of asymmetries, it is clear that the experimental 

measurement of an asymmetry is, in fact, a direct measurement of the phase of a CKM matrix 

element which is a mote fundamental quantity. 

4.2 The “Unitary Triangle” 

One recalls from Section 1 that the CKM matrix was constructed to be a unitary matrix so 

as to have a universal strength electroweak interaction and to suppress FCNC. Let us first define 

unitarity for the CKM matrix. 

v-1 E v+ 

w-1 = 1 =w+ =v+v 
4.2.1 

A unitarity matrix is one whose inverse is its Hermitian adjoint. One can write the unitarity 

relations down in matrix form for any given representation. In particular, the representation of V 

in the strong eigenstate basis for rows and columns was done in Section 1, and is conventional. 

v; vu, + v;d V& + v,; v, = 0 4.2.2 

v,-e(e2)+vt~=o 

In Eq. 4.2.2, a special case of the unitarity condition was explicitly written out using two 

columns, b and d. The numerical result of that special case of the unitarity condition can be read 
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off using our representation of the CKM matrix given in Eq. 1.4.2. This particular choice was 

made because, in the Standard Model, one has only one complex phase, 6. The matrix elements 
Vub and Vtd am the only ones which have significant imaginary parts. Written out explicitly, one 

sees that there is a “unitary triangle” in the sense that one has three vectors which form a closed 

triangle of non-zero area 

v,+v;=e3 

Iv&-i”+ prdp‘f =03 
4.2.3 

This closed vector triangle in shown in Fig. 4.2.1. Also indicated in Fig. 4.2.1 are 

experimetal ways in which one might measure the matrix elements. For example, b semileptonic 

decays give information about Vqb as we discussed in Section 2. The box diagram for E-B 

mixing, with the assumed dominance of the heaviest quark in the internal loop, means that B - B 
mixing informs on the Vtd matrix element. This assertion will be discussed in great detail in 

Section 5. 

As discussed in Section 4.1, and in Section 3, a measurement of a CP violating parameter 

is directly related, in the Standard Model, to the CKM matrix elements. For example, one can 

imagine a “complete” set of measurements of decay asymmetries for Bd where the transition is b 

goes to c and Bs where the aansition is also b to c. Rare decay asymmetry measurements of Bd 

and Bs would have the underlying spectator transition b goes to u. Reading off from Eqs. 4.1.2 

and 4.1.3 one can simply find, by inspection, the phase of the CP violating asymmetry parameter 

in the four decays of interest. 

Ed@ -j C), 2&d 
B,(b -+ cl, 0 
&(b + U), 2(& + 6) 
B,(b --f u), 26 

4.2.4 

For Bd decays one has a complex phase, whereas for allowed Bs decays, since the direct 

CKM matrix elements are not complex, one has no asymmetry. In any case, this complete set of 
four measurements depends on only two parameters, the phase of Vtd and the phase of Vbu, 

defined to be 6. The magnitudes of Vtd and Vbu are assumed to be separately determined by 

mixing and measuring rare decays respectively. Therefore, one can expect that if one could 

perform such a set of measurements, one would both specify the two elements of the CKM matrix 

and go beyond that and put constraints on the “unitary triangle.” This test is intrinsic to the 

Standard Model assumptions as to the structure of the CKM matrix. 
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Fig. 4.2.1 The “unitary triangle” relationship between V,b, V$, and Vz, V,b. 
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Fig. 4.2.2 Allowed topology of rhe “unitary triangle” as constrained by a variety of 

experimenul data. 
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The allowed region of the “unitary hiangle” is shown in Fig. 4.2.2. As we will discuss in 

Section 5, the input data, which constrains the allowed region of the CKM matrix elements, has to 
do with rare B decays which pin down the modulus of vbu, and B - B mixing, which constrains 

the modulus of vtd. In addition, the E parameter in the K” system is sensitive to the mass of the 

top quark and vtd. 

As an example of conceptual experiments to measure elements in the “unitary triangle,” 

consider the decay Bd goes to w KS. The mass matrix connibution to the phase in the q/p ratio 

we’ve already seen is twice the phase of vtd whereas the allowed decay amplitude has no phase 

attached to it. Therefore, the asymmetry parameter has an imaginary part which is the product of 

those two factors, which is just 2 $td. 

AB,(&Ks -sin(2#,d)sin(mt) 4.2.5 

One recalls that the expected CP asymmetry was asserted to be large, of the order of 10%. 
One can see from Fig. 4.2.2 that, indeed, the most likely value of the angle $td is of order 20”, 

which is the origin of the assertion that one can expect a large effect. Note that in the case of Bs, 

one needs a rare decay since the allowed decays for Bs have a phase of zero which means the CP 

asymmetry will be zero. However, that is not to say that measuring the phase of an allowed Bs 

decay asymmetry would not be useful. The measurement is in itself a constraint on the Standard 
Model. Therefore, observation of a non-zero asymmetry in a CKM favored Bs decay would be an 

indication of physics beyond the Standard Model. 

4.3 K Decays and q 

Let us briefly look at the time development of states in the case of the kaon system. There 

are characteristic differences between formulae for that system and the formulae we have already 

developed for the B system. It is certainly worth making this bypass because, in fact, the kaon 

system is the only one for which a CP violating effect has yet been measured. Recall that the CP 

eigenvalue for the 2n state is the negative of the CP eigenvalue for the 3n state. Given the low q 

value for kaon decays into 3 pions, this means that the lifetime difference between the CP 

eigenstates in the kaon system is very large. In fact, it is of order 580. 
Suppose one makes a kaon in the state 10 > at t = 0. That state can then be decomposed 

into the CP eigenstates which we will again call II> and 12 >. Those CP eigenstates evolve in 

time independently and orthogonally. 
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l-1 >> l-2 

IW >- ~[.[e”L’Il(O) > +e-Q/2(0) >] 
4.3.1 

Now consider a final state If >. The probability amplitude for that final state as a function 

of time has oscillatory behavior. 

< flW ’ - 
< flW) ’ -a f 42 k 1 1 + qe-Q 

q ~ < fl2 ’ 
4.3.2 

< fll ’ 

One can then square the amplitude and find the decay rate as a function of time for the 
appearance of the final state If > having produced the state 10 > at t = 0. 

l-(r) -I< fll(O) >I2 
2 

i 

,-r,t +171jp' +2,~,~~r~:rz~'cos(i\Mtc4) 1 4.3.3 

In a very similar fashion one can find the rate for the appearance of the final state 1 f > 
having produced the state 16 > and t = 0. One can then define a CP violating asymmetry between 

the appearance of the final state If > at time t for initial states prepared as IO > and ITi > at t = 0. 

- 

y+ f$ -21?+F [cos(AMr+$4)] 4.3.4 

Clearly, the existence of this asymmetry depends on the parameter q being non-zero. 

Therefore q is a CP violating parameter. Given the definition of q in Eqs. 4.3.2, and the 

decomposition of the weak eigenstates in terms of the strong eigenstates, one can find an 

expression for rl in terms of the q and p parameters and the amplitudes into the final state as we 

did previously for the B system. 
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v- 1 
<f(PjOz-qp)/JZ 

< fl(plO > +qp >)/ a 

I-qlP<f/bl<fp> 

“l+qlp<fl0>l<flO> 

q-(P-4)l(P+d=E 

4.3.5 

At present, the data on CP violation in the kaon systems tells us that the magnitude of 11 is 

roughly 2 x 10m3. If there were no CP violation in the final states, then all of the CP violation 

would be in the q/p ratio. In that case, it is easy to see that the TJ parameter is in fact the E 
parameter which we defmed previously. The cUrrent data on KL + X+X- and K’K’ tells us that 

the modulus of tl for decays into z+z- is 2.3 x 10m3 and the phase of “(1 for charged decays is 46“. 

For the non0 decays, the modulus is also 2.3 x 10J and the phase is 48’. 

Within experimental errors the q parameters and the E parameter are equal. The possible 

effects of CP violation in the final states are contained in the E’ parameter. The ratio of E’ to E is 

presently measured to be no larger than something like 2 x 10e3. Later we will discuss the E and 

E’ parameters for the kaon system when we attempt to calculate them roughly using the Standard 

Model box diagram. 

4.4 Time Integrated Information 

In this Section, we will discuss the information which can be extracted using only 

measurements gained by integrating over all possible decay times. This is important 

experimentally because, given the lifetime of the B which we said is some hundreds of microns, it 

is difficult to construct a detector of sufficient resolution to accurately tag the decay time of the 

heavy flavors. Therefore, we expect that the experimental situation is such that if one can extract 

useful information in a time integrated fashion, it would be easier to do than to be forced to 

measure the decay time on an event by event basis for individual B decays. 

4.4.1 Lepton Pairs 
Consider the situation where one prepares a state of IO > at t = 0 or a state of lfi > at t = 0 

and lets that state evolve. At the moment of decay let us assume that the state 10 > can be tagged 

by a lepton of one charge, whereas the state 16 > can be tagged by the lepton of opposite charge. 

An obvious example of tagging is b goes to c transitions of B mesons. The B is tagged by a p- 

and the B is tagged by a p+. The time development of the states is given in Eqs. 3.4.6. 
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Consider the production of the state IO > at t = 0 which evolves in time and is tagged at 

time t to be in a state IO > also. The time integral of that condition gives you the integrated 

probability that the produced state IO > decays into a state 10 > at any time. 

r(o + 0 -3 e-j dr[o(o) -+0(t)-+ e-x]df 

Polo = je-r’ cos2 (Am / wt 
0 

4.4.1.1 

The notation Pa/b defines the probability for a state a produced at t = 0 to appear as the 

state b at some unmeasured later time t which is integrated over. As we said before, there is a 

competition between oscillation and decay. The parameter which measures that competition is x, 

which is defined to be the ratio of the mass difference to the decay width. One can use our 

previous expression for the time development of the states and integrate over all times. There are 

four possibilities. One produces the state IO > which decays into IO >, or which decays into a state 

/fi > or one makes a state 10 > at t = 0 which decays into state IO >, or which decays into state 

IO >. 
x=mn- 

PO,0 =(1+x2/2)/(1+x2) 

I/ 
2 

PO,5 = 2 (x2/2)/(1+x2) 
4 4.4.1.2 

II 
2 

Palo= 2 (x~/2)l(1+x2)--po,~ 
P 

Some limits that one can think about are when x becomes very large (which means one 

oscillates before decaying) or the limit when x goes to 0 (which means you decay immediately 

before you have a chance to oscillate). In the case that x is large, the oscillation completely mixes 

the identity of the state, which means that the probabilities all go to one half. In the limit where x is 
- - 

very small, we have no mixing. That means the diagonally probabilities PO / o and PO /o go to 

one, while the off diagonal probabilities PO / 0 and PO/o go to zero. Note that probability is 

conserved in that PO/O + PO / 0 sums to one. Similarly, the sum of the probabilities for an 

initial 10 > state are also one, PzIz + Pz10 = 1. 
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In the literature one occasionally finds the parameter r, which is defined to be the ratio of 

decay rates for the observation of mixing to the observation without mixing. The ratio is just the 

ratio of the off diagonal probabilities to the diagonal probability. 

The relationship between x and the r and F parameters follows from Eqs. 4.4.1.2. 

II 
2 

r=$ (x2)/(2+xZ),0~r<1 

II 

2 

F=; (x2)/(2+x2)-r 

4.4.1.3 

4.4.1.4 

Finally, there is yet a third set of parameters which appear in the literature which are the x 

parameters. They &fine the off diagonal probability to the total probability for any decay. 

X~r(o~e+)/[r(o~e+)+r(o-,e-)i 

=r/(l+r) 
4.4.1.5 

Using the previous results, it is easy to write down the x parameter in terms of the x 

parameter which defines the ratio of oscillation to mixing. 

What about the situation for lepton pairs? In strong interactions one produces a pair of 

quarks and antiquarks (for example b and 6) and measures the time integrated probability of 
observing lepton pairs. For simplicity, one imagines an initial state of a IO > and 10 > and looks at 

the evolution of this state as a function of time, integrating over all times. One can get like sign 
and unlike sign pairs. For example, the probability of finding a /L+P- pair has a contribution from 

the probability of diagonal propagation without mixing. In order to have like sign pairs, one of the 

states IO > or I?i > needs to mix. Finally, to get the state p-p+ both the initial states must mix 

and reverse their identities. 
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w(O)=lOO >, v(r) 
r-+ = polo pij16 
r-- = polo pElo 

r++ =po16 pGIu 

r+- = polG pElo 

4.4.1.7 

The asymmetry parameter for the lepton pairs is then the ratio of the probabilities for either 

of the initial particles to mix to the probability that neither mix or that both mix. 

A(ee) = 
r++ + r-- 
r-+ + r+- 

Using our previous expressions for the probabilities, it is easy to see that the dilepton 

asymmetry vanishes as x2 for small mixing. This means that there is no asymmetry in the 

absence of mixing, as is physically obvious. When x is very large the asymmetry becomes one, 

which means the states are entirely mixed before they decay. Therefore, any appearance of lie 
sign dileptons means that there is mixing in the IO >/ 10 > two level quantum system. 

One can also define a CP asymmetry which is the ratio of the difference in probabilities of 
IO > mixing and 16 > mixing over the sum of the probabilities of either no mixing or both the IO > 

and 16 > mixing. 

4dee)= 
r++ -r-- 
r++ +r-- 

=~p/q~2-~q/p~2 -[Im(r12/M,,) 
IP Id2 + I4 1 PI2 

4.4.1.9 

-4ReE 

Note that one is measuring the CP violating parameter E directly. There are no strong 

interaction effects in the final state as there were in our previous discussion of nonleptonic B 

decays. Therefore, a CP violating asymmetry measurement in the dilepton study would allow us 

to measure the E parameter for the B system. Recap that E is a small number which is in principle 

purely imaginary. Therefore, this is a very hard measurement which has yet to be accomplished. 
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4.4.2 K + nfv Asymmetry 

A measurement that has already been made of a CP violating asymmetry arises in the kaon 

system. Suppose one has a KL which in our present notation is the 12 > eigenstate of the 

I I- O > / 0 > two level system. As one can see from Fig. 1.3.2, in a spectator model the strange 

quark decay is tagged by the appearance of a negative lepton, whereas the S quark decay is tagged 

by the appearance of a positive lepton. Therefore, one can tag the s and S content at any given 

time by looking at the sign of the lepton in the decay. Obviously, if CP were conserved, one 

would have equal numbers of negative and positive leptons from a neutral parent initial state. 
Using Eqs. 3.2.4 for the representation of the weak eigenstates in the IO > and 10 > basis, one can 

find the probability amplitude for the appearance of IO > and 10 > in the weak eigenstate 12 > 

< 012 ’ = Jji+ 

c612>= &i$2 4.4.2.1 

Acp= 
r+-r- 
r, +r- 

=2Re&=<112> 

In analogy to the asymmetry in dileptons, one can look at the asymmetry in the appearance 

of positive and negative leptons in a weak eigenstate over the sum of the decay rates. Using our 

previous expressions for E, it is again easy to see that there are no strong phases involved in the 

semileptonic decays. The CP violating asymmetry is proportional to the real part of E. In fact, the 

result of this measurement is that the real part of E is 1.4 x 10-3. Note that this asymmetry 
measurement gives you a direct measurement of the CP violating parameter in the kaon system. 

4.4.3 AM / F Data 

Let us consider the data on dileptons in the B system. As we have already mentioned in 

the kaon system, very precise measurements have allowed us to measure the real part of the E 

parameter for that system. This measurement is so far beyond the reach of experiment in the B 

system. However, the ratio of the like sign to unlike sign dileptons for the B system has been 
measured both at e+e- machines and j?p machines. A glance at Eqs. 4.4.1.8 tells you that the 

measurement of like sign to unlike sign dileptons is a direct measurement of the mixing parameter 

x. Some of the recent data is shown in Table 4.1. For example, a recent CDF measurement is that 

x is 0.176 which means that x for the B system is roughly 0.7. 
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TABLE 4.1 

MIXING AND DILEPTON DATA 

EXPERIMENT BEAM 

tJAl* FP 

lADE e+e- 

Mark II e+e- 

MAC e+e- 

c.m. GeV 

540 

34 

29 

29 

x 

0.12 * 0.047 

< 0.13 (90% c.1.) 

< 0.12 (90% CL) 

t0.29 
0.21 

-0.15 

ALEPH* e+e- 91 tO.027 
0.132 

-0.026 

L3* e+e- 91 +0.049 
0.178 

-0.040 

*average 0.142 0.020 + 
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x= 0.176 

- 0.7 

AM - 4x10-13GeV 

CZB - 35ojlm 

4.4.3.1 

In contrast to the kaon system, there are two possible neutral B mesons, the Bd and the Bs. 

They have distinct mixing parameters x. We note that the controlling factors for the mixing can be 

read directly (in the Standard Model) from the box diagram as we asserted already in writing down 

Eq. 4.1.1. The mass difference has a contribution from the CKM fat tors at the four vertices of the 

box diagram. The decay, in the spectator model, has a factor which comes from the b to c 

transition at the vertex of the spectator diagram. 

4.4.3.2 

These vertex factors then imply immediately that the mixing parameter x for the neutral Bd 

meson is smaller than the Bs meson by roughly the ratio of the Cabbibo angle squared. Since we 

know that the mixing parameter is of order one for the Bd, the x value for the Bs must be very 

large. 
xss-17 4.4.3.3 

Therefore, we expect that the Bs will mix before it decays whereas the Bd will have a 

competition between mixing and decay. Some of the constraints imposed by the data are shown in 

Fig. 4.4.1. For the e+e-machines, one is below threshold for the Bd and so the dilepton 

measurement is a pure measure of the Bd mixing, as one can see from Fig. 4.4.1. On the other 

hand, in the hadron collider experiments, UAl and CDF, the data is a mixture of Bd and Bs so the 

effective measurement is a combination of the x parameters. Therefore, the hadron data is shown 

as a slope with narrow ranges in the two dimensional parameter space. Finally, the Standard 

Model relationship is shown as a curve. That curve is essentially a representation of the 

relationship given in Eq. 4.4.3.2. Note that x is limited to the range, 0 < x < l/2. 

What one can say is that Bd has a mixing parameter x of about 70% and that Bs probably, 

although there is no pure direct measurement, has a large mixing as is expected in the Standard 
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Fig. 4.4.1 Constraints on X, and Xd from pp and e+e- collider data along with the allowed 

region in the CKM model. 

79 



Model. The data in its present state of accuracy certainly agrees with the Standard Model. Later in 
Section 5, we will attempt to make an estimate of the x parameter for the Bd meson. We will see 

that this data places useful constraints on the Standard Model parameters. 

4.4.4 Integrated CP Violation Asymmetry 

ln Section 3, we discussed and derived the time distribution of the CP violating asymmetry 

for hadronic decays. Since there is, at present, no experimental data on proper time tagged decays 

of B systems, it is worthwhile to ask if there is any information that can be extracted from time 

integrated data. Let us define the CP violating parameter a which has potential contributions from 

the decay amplitudes and from the mass matrix. 

a=qlp ::I,“: 
( 1 

Ezplq <flO> 

( 1 < jp > 
4.4.4.1 

The decay rate into a particular final state as a function of time is oscillatory in time. The 

amplitude of the oscillation is driven by the CP violating imaginary part of the amplitude a. 

Im(a) =- Im(E) 

r[o(t) + f]= em” I< fl0 >f [l- hn asin( 
4.4.4.2 

This latter equation is simply Eqs. 3.5.6. The integrated decay rates into the CP eigenstates 
]f > and If > are easily derived by integrating over time. The CP violating piece is, 

r(0 -+ f) -Im(a)[x / (1 +x2$ flo >I 

r(ij -+ j) -Im(E)[x / (1 +xzHj< j/O >I2 . 

The integrated asymmetry is then; 

jA(r)dts A xIma x [ 1 1+x* 

4.4.4.3 

4.4.4.4 
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Clearly, this measurement requires that one has a tag to indicate the 10 > and 10 > state. 

Obviously, as the mixing goes to zero, the asymmetry goes to zero. One needs both mixing and 

CP violation in order to get an integrated time asymmetry. One should also note the particular fact 

that in the integrated case, as x becomes very large, the asymmetry goes to zero. That means that 
the integrated asymmetry is washed out by mixing. Therefore in studying Bs, where x is expected 

to be rather large, one will be forced to measure the asymmetry at a tagged decay time in order to 

establish CP violation. 

However, in the Bd system, with an x close to one, although one suffers some washing out 

of the asymmetry by doing the time integral, one still has a reasonably sensitive measurement. 

The integrated asymmetry as a function of the mixing parameter x is shown in Pig. 4.4.2. Also 

shown in the figure are the probabilities for a state 10 >, to decay as a state 10 >, and the probability 

of the state 10 > to decay as a state 10 5, Polo and Pa,~. 

Recall that the “diagonal” probability is one for no mixing. With large mixing it 

approaches one half so that the states are completely mixed The “off diagonal” mixing probability 

starts at zero for no mixing and also asymptotically reaches a value of l/2. The CP time integrated 

asymmetry for small mixing vanishes because one needs both mixing and CP violation in order to 

have an asymmetry. In addition, as we have said, the asymmetry vanishes at large values of x 

because the time integrated measurement is washed out by oscillations. Therefore, there is a 

maximum in the time integrated asymmetry at x of 1. As we have said before, this means that the 

Bd system is nearly ideal for using time integrated information. The Bs measurement loses about 

a factor of 10 in sensitivity due to the oscillation and dilution. Therefore, in the case of Bs, one will 

need vertex detection. 
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(TIME INTEGRATED OSCILLATIONS1 
AND CP VIOLATING ASYMMETRIES 
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Fig. 4.4.2 Time integrated probabilities PoiO and foi5 as a function of x = AM/r. Also 

shown is the integrated CP violation asymmetry Eq. 4.4.4.4 for Ima = 0.2. 
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5. “BOX” DIAGRAMS AND SM CALCULATIONS 

Until now we have treated the formalism which we have developed in Section 3 and 

expanded on in Section 4 in a purely phenomenological way. We have made little attempt to 

connect this to the Standard Model except where necessary to make some simple assertions 

referring to box diagram vertex factors. In this Section, we attempt to connect the measurements 

that we have discussed in Sections 3 and 4 with the elements of the CKM matrix using the 

Standard Model. 

5.1 M12 and Bd, Bs 

In Section 3, we discussed the general connection between the two level quantum systems 

with strong eigenstates 10 > and 16 > via a complete set of intermediate states, In >. In second 

order, there were on-shell elements of the decay matrix and off shell level shifts for the mass 

matrix. 
M,, = ~~(OIHWIn)(nlHwI~)/(~o-~,) 

n 

Note that in the Standard Mode1 there are no AB = 2 transitions, so the first order piece of 

the off diagonal mass matrix elements are assumed to be zero. We will assume it to be true until 

there is evidence for something like a super weak theory. We will also make the assumptions that 

in the systems we are interested in, the spectator models dominate. We can then use the results 

which were developed in Section 2. 

In particular, in looking at the box diagram, there is a connection between the physical B 

and B mesons and the quark and antiquark state at short distance. We will assume that, as in 

Section 2, this conversion probability is defined by the pseudoscalar coupling constant, fn. We 

have experimental values for the pion and kaon coupling constant. It will be assumed that the D 

and B have similar values. Assumptions are necessary since the pseudoscalar coupling constant 

for B and D systems has yet to be measured. 

Using the box diagram which we have already given in Fig. 3.1.1, one can write down the 

vertex factors and the exterior pseudoscalar couplings as in Eqs. 5.1.1. In Eq. 5.1.1 the term 

(INT) is a representation of the internal kinematics of the loops in the box diagram. A loop 

integral arises in integrating over the internal momentum of the interior legs of the box diagram. 

let us define the vertex factors for the B system and write the amplitude for the box using the 

interior propagators. 
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5.1.2 

- x&i&j (INT) 
ij 

One can expand as a power series in the interior fermion propagators and use the unitarity 

of the CKM matrix as it appears in the vertex factors. This means that in the expansion only the 

fist term shown in Eqs. 5.1.3 survives in leading order. 

( q2 Im,2)r q2 JrnF]= q4(q2 -z;iz -mt)-“’ 

FEi = 0,V unitarity 5.1.3 

dq4q6m,2mj2 / Mw4 

q4(q2-A4~)2(q2-m~)(q2-m~)‘q+~ 

Thus, the leading power behavior in q* of the internal loop is dominated by the largest 
mass. Basically, this means that the propagator supports momenta up to a scale mi so that the 

heaviest quark in the virtual loop dominates. As we will see later, a FCNC amplitude such as the 

box diagram is nonzero in higher order because of the propagator mismatch. An example of this 

behavior will be given in Section 5.5 (see Eq. 5.5.2). Therefore, under that assumption, ignoring 

the external momenta of the exterior legs of the box, and taking only the leading term in the 

integral for the loop, one finds that the loop integral is proportional to the square of the heaviest 

mass in the interior legs. Note that this is true for top masses less than Mw. Although we now 

know that this assumption is not true, we retain it for the sake of simplicity. The appropriate 

kinematic modifications are available in the references. 

The off diagonal term in the mass matrix is a FCNC amplitude, which is second order in 

the electroweak coupling. Therefore, the ratio of Mt2 to the mass of the exterior particles is small 

for all allowed top masses. 
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(ml-) - s,s,,m,* 

W2 - 
G2fB2MB E 2m 2 _ [aw(fm/&)~M~ 

121c2 ’ r - 24 
5.1.4 

&2-a~2 fBm, [ 1 
2 

MB 24 MW2 ‘I* 

For the off diagonal elements of the decay matrix in the strong eigenstate basis, the 

calculation goes essentially exactly the same except, as we have said, the intermediate states must 

be real and on shell. Therefore, the loop integral is cut off earlier on a mass scale equal to the mass 

of the exterior particles which in this case we assume to be B mesons. 

r12 - 
G2f,2MBE 2M 2 

8~ ’ B 

IL- 

2 

MI, 

*AI--O 

5.1.5 

Therefore, for large top quark masses, the elements of the decay matrix relative to the mass 

matrix are much less than one. This is the Standard Model justification for our previous explicitly 

stated assumption that the splitting in decay rates relative to the mass splitting was small for the B 

system. 

5.2 @M/M), 

Data on the mass splitting exists to great precision for the kaon system. In fact, the x 

parameter for the K system is again a number of order one, indicating a toughly equal competition 

between oscillation and decay. 

XK = 0.47 

(cz)~ = 2.7cm 

5.2.1 

Is this something that can be estimated in the Standard Model? One recalls from Section 3 

that the mass splitting is proportional to the real part of the off diagonal elements of the mass 

85 



matrix. In a calculation very similar to that given in Eqs. 5.1.4, one gets the Standard Model 

estimate for the off diagonal mass matrix element given below (see Eq. 3.2.5). 

AM, - 2ReM,, 

(MI,), - G2:IzMK (m2)(VcZvf,2) 5.2.2 

The reason for the appearance of the charm quark in the loop, rather than the top quark, 

comes from a glance at the CKM matrix. The charm quark is coupled to the strange quark with 

unity strength, whereas the top quark coupling to the strange quark is very small, since one is far 

off the diagonal in the CKM matrix. Therefore, the charm quark is the one which dominates in the 

internal loop. It is not because of the kinematics of the mass of the internal loop, rather it is due to 

the unknown dynamics which is subsumed in the coupling given by the CKM matrix. 

As an historical note, it was this sort of estimation which lead to an upper bound prediction 

on the charm-quark mass prior to its discovery. The constraint arose because if the charm quark 

became too heavy, the measured mass difference of the kaon would be exceeded in the Standard 

Model. Plugging in the numbers, one gets a fractional mass splitting of approximately 3 x 10 -15. 

K -(Gfck)* 02= aw2(fKm8~MW2) 
6n2 12 5.2.3 

- 3x10-15 

Comparing to the experimental data on the mass difference, it is clear that this quantity is 

roughly calculable for the kaon in the Standard Model. This estimate also makes clear the 

sensitivity of Ah4, to the charm quark mass. 

5.3 AM/FforK,D,B 

One can continue the general treatment described in Section 5.1 into the D and B systems 

in the same vein as the treatment of the kaons given in Section 5.2. In order to get an estimate for 

the x parameter, one uses the mass splitting given by the Standard Model box diagram as outlined 

in Section 5.1. For the decay width the spectator diagram is used as was discussed in some detail 

in Section 2. For the B system, we assume that the internal box diagram is dominated by the top 

hp. 
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5.3.1 

For the B system the vertex factors are straightfonvard to read off from the CKM matrix. 

XBd -(f&h,;)l(g)i(F) 

5.3.2 

Numerically, if one assumes a pseudoscalar coupling constant equal to the pion coupling 

constant, a top mass of 120 GeV, a bottom mass of 5 GeV, and a Cabbibo angle of l/5, one gets 
an x parameter for the B system of rougly 0.7. This is quite comparable to the observed Bd 

mixing parameter of 0.73. 

xBd exp =0.73+0.18 

fB - f, - 0.14GeV 5.3.3 
X&j - 0.7 

On an historical note, the fust evidence for large mixing in the BE system was an early 

indication, albeit indirect, that the top quark mass would be quite large. Note from Eqs. 5.3.2 that 

the x parameter in the Bd system goes quadratically with the mass of the top quark. Therefore, as 

we have seen experimentally, mixing competes with decays for the Bd system. It is also quite 

obvious, as we have mentioned in Section 4, that the Bs system x parameter is related to the Bd 

system value simply by vertex factors. Therefore, we expect the x parameter for the Bs system to 

be roughly 17. 

% - XBd I#-17 5.3.4 

Therefore, the Standard Model prediction is that mixing occurs at a much faster rate than 
decay for the Bs system. That expectation agrees with the measurements, such as they arc, from 

hadron machines from which the x parameter for the Bs system is inferred. 
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Now what about the situation for the charm quark? The general expression for the mass 

splitting which we already derived implies internal s and b quark loops. The s quark internal loop 

is highly suppressed by the small value of the strange quark mass, whereas the b quark loop is 

strongly suppressed by the weakness of the coupling factors. This is the same small coupling, let 

us note, that leads to the slow decay rate of the b. Recall that the coupling is small enough to 

overcome the fifth power mass scaling in going from the c to the b system yielding comparable 

lifetimes for B and D mesons. 

On the other hand, the decays are given, in the spectator context, by the c + s transition. 

Its strength is given by the Vcs CKM matrix element which occurs at full strength. The D decays 

are not slowed by coupling factors, whereas the internal loops are very highly reduced. In fact, 

they go as the tenth power of the Cabbibo angle. Therefore, one can expect that mixing in the D 

system, at least in the Standard Model, is extremely small. In fact, the experimental limit is that 

the mixing parameter x for the D system is less than 10%. 

mD s - E 2ms2 - t12ms2 

- Eb2mb2 - 8 10 2 mb 

rD -v;s-i 

XD << l,(xDexp) < 0.085 

5.3.5 

Therefore, a high precision study of D mixing, with a nonzero result, would indicate 

physics beyond the Standard Model. 

In the case of the kaon system, the situation is somewhat more complicated. In this case, 

the possible internal quarks connecting to the external s quarks, are the u, c, and t quarks. For 

internal c quarks the mass splitting is reasonably favorable, whereas top quarks, as we have said, 

are rather decoupled from the strange quarks because of the essentially diagonal nature of the 

CKM matrix. The ratio of the vertex and kinematic factors for the internal c and t quark loops is 

such that the c quark dominates the mass splitting by about a factor of 50. 

AM, - Ec2rnc2 - e2rnc2 

g4m - E *mt2 - 010m12, ---L I 
! 1 

2 - 0 02 . 
mc 5.3.6 

rK - vsq2 - e2 

XK -1 
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However, a very heavy top would certainly upset the measurements of the mass splitting in 

the kaon system. Therefore, some modest constraints on the top mass arise. Recall that the kaon 

decay rate is slowed by Cabbibo suppression. Therefore, the kaon decay is somewhat slow as is 

the B decay. In both cases one has a suppressed decay and a heavy mass in the loop. Therefore, 

for both the B and the K system, one expects the x parameter to be of order one. 

5.4 Mz/Mw to o(qv) 

Before going on to estimates of CP violating parameters in heavy quark systems in the 

Standard Model, we will look briefly at the effects of internal loops in various systems. First, one 

wants to look at the vacuum self energy contributions to the electroweak gauge bosons in lowest 

order due to virtual heavy quark loops. 
The classical self energy for a charged system of mass Mo. can be visualized as being due 

to the electrical field of that charge which contains electromagnetic field energy and therefore, 

mass. 

M, =M,+~jl~l*& 

e2 1 
=MO+- I 8mz+7 T<a 

I E(r)12 2, 
5.4.1 

Smearing out the charge by a radius a, yields a self energy which diverges linearly with 

distance. This is quite familiar from classical electrodynamics. In quantum mechanics, one has a 

similar situation in that the self energy has a piece which diverges. However, the divergence is 

softened by the existence of virtual electron-positron pairs in the vacuum at small distance or at 

high momentum. This softening of the behavior due to the screening effects of the virtual pairs 

results in a logarithmic divergence of the self energy. 

Ma =M,+;jf(r)dr 

f(r) - Ii+-)/* for r > X 

5.4.2 

The size of this divergence can be estimated when one cuts off at a mass h, which is 

complementaty to the classical cutoff at sire a. 

Mm -MO I-$n(M,,k)*] 5.4.3 
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A schematic representation of the classical and quantum mechanical self energy is given in 

Fig. 5.4.1. Quantum mechanical self energy is proportional to the fine structure constant and the 

divergence is logarithmic in the cutoff parameter. Note that this behavior is similar to the cutoff 

theory for the propagator in QED which was given in Eqs. 2.5.3 during the discussion of penguin 

diagrams and internal loops. 

A similar sort of vacuum fluctuation graph is responsible for changes in the self energy of 

the gauge bosons. The graphs with internal heavy flavor loops for virtual intermediate states for 

both W and Z are shown in Fig. 5.4.2. In that Figure, only the heaviest flavors in the internal 

loops are shown, since we expect from our earlier discussions, those am the flavors which will 

dominate. The gauge boson self energy is then dominated for the Z by internal top pairs and for 

the W boson by internal CKM favored rb pairs. Since the top is so much heavier than the other 

quarks, a precise measurement of the gauge boson self energy will constrain the top quark mass. 

Note that the loop integrals are asymmetric in W and Z, which will change the W to Z mass ratio. 

To lowest order there is a relationship between W and Z which is given by the Weinberg angle. In 

higher order this relationship is broken by the top quark mass loops. 

a, -l/30 

m, - 120 GeV 

Ap - 0.4% 

5.4.4 

Note that this splitting of the W to Z mass is proportional to the quark mass squared and to 

the electroweak fine structure constant. Note also the similarity to Eq. 2.5.4 for internal loops in 

b + sy decays. For photons, gauge invariance implies no fermion squared mass terms which 

leaves the soft logarithmic dependence of Eq. 5.4.3. Electroweak gauge invariance is broken, 

leading to fermion mass squared terms in radiative loops. Numerically, for 120 GeV top, the 

splitting is of the order of one percent. A precision electroweak measurement of the Z and W 

mass gives us constraints on the top. In particular, it gives us at present a limit on the top mass. 

Top cannot be so heavy as to cause a large splitting in the W to Z mass ratio. This is yet another 

Standard Model example of propagator mismatches in loop diagrams which give rise to splittings. 
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Fig. 5.4.1 a. Classical self energy of a charge distribution. 

b. Quantum mechanical self energy in a diagrammatic representation. 
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5.5 FCNC in B + p,n, K -+ w and the GIM Mechanism 

What about the potential existence of flavor changing neutral currents in the Standard 

Model? As noted in our previous discussion, the GIM mechanism cancels flavor changing neutral 

currents in lowest order. Of course, the question is then, what about higher diagrams? An 

example of box like higher order diagrams is given in Fig. 5.5.1 for B decays into dimuons. 

These are experimentally accessible signatures and they have been searched for. At present, there 

are only limits on the decay branching fractions. One expects that the heaviest flavor in the internal 

legs of the box will dominate. Can we estimate in the Standard Model the size of flavor changing 

neutral current effects? Note that experimentally the branching ratio for Bd into dimuons has a 

limit of 5 x 10e5, whereas the branching ratio for KL to dimuons has been positively measured and 

has a branching ratio of 6 x 10M9. 

Let us first look at the KL decay and see if the Standard Model makes any plausible 

estimate for the flavor changing neutral current decay rate. A topologically similar diagram exists 

for purely leptonic decays of charged kaons to leptons and neutrinos as shown diagrammatically in 

Fig. 5.5.2. Recall the discussion in Section 2, wherein the purely leptonic decay rate for kaons was 

&liVd. 

r(K + W’) - ~[f@&lh 5.5.1 

The box diagram contribution to the decay K, -fpp is suppressed by the GIM 

mechanism since it is a FCNC. However, the difference in internal propagators means that the 

suppression of FCNC is not complete. Looking at Fig. 5.5.2b one can write the vertex and 

propagator factors for the internal charm and up quarks in the box. 

aBox - 
vu.vv; vcsvtd 

q* - mu2 + 2 
4 -m,* 

-8 l 
[ 

1 

q*-mu2-q*-mc2 1 
- h2/[q2(q2 -m?)] 

5.5.2 

Clearly, the amplitude is zero without the propagator difference which is a statement of two 

generation unitarity. This is in line with our previous discussion. Unitarity of the CKM matrix 

insures the vanishing of FCNC in lowest order. Looking at Eqs. 5.5.2, it is clear that the mass 

mismatch in the propagators makes for an incomplete GIM cancellation. The amplitude for the 
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Fig. 5.5.1 FCNC diagrams for Bad + p+p- decays with intermediate 

a. W States 
b. Virtual Z + p.u decay. 
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box is proportional to the vertex factors and the square of the heavy mass in the loop. This result 

is in complete agreement with the discussion of Ml2 in Section 5.1. 

Comparing the two diagrams given in Fig. 5.5.2, counting vertices, and recalling the fact 

that the pseudoscalar kaon decay into two muons is still helicity suppressed (as is the purely 

leptonic decay for charged kaons), one is lead to an estimate of the ratio of the decay rates given 

below. 

r(fk -+ P+P-) G2mc4 

r(K+ -+ /.I’“) -2K4 
55.3 

4 

The dependence on the charm quark mass comes from the internal loop. The relative 

vertex factors for the two diagrams can be read off Fig. 5.5.2. Numerically, the ratio is about 2.6 x 

10-l*. Therefore, using the measured decay rates, the branching ratio in the Standard Model for 

KL + p+p- should be 7 x lo-‘*. This is much less than the experimental value of 6 x 10e9, 

which means that the Standard Model, at least at this level of understanding, is not responsible for 

this FCNC decay rate. 

A possible reason for this disagreement is shown diagrammatically in Fig. 5.5.3. The 

question is whether the electromagnetic interaction swamps the Standard Model flavor changing 
neutral currents. Clearly, looking at Fig. 5.5.3a. one expects the branching fraction for Ks to yy to 

be of order a* times the branching fraction of Ks to noa which is of order one third. Since the 

observed branching fraction of Ks to “my is 2.4 x 10e6, as compared to IX* which is 5.3 x 10M5, the 

yy branching ratio can be thought of as a higher order electromagnetic correction to the main 

tr”no branching rate. 

B(Ks -+ r/) - cz* 

B(KL + ,u+/r-) - a*B(K, --f WY) 5.5.4 

-3x10-8 

In yet higher order, the dimuon rate can be thought of as an electromagnetic higher order 

contribution to the yydecay rate. The branching ratio of KL to two photons is 5.7 x 10e4. One 

expects a KL to 2 muon rate roughly a2 times smaller than that, or 3 x 10s8. This is certainly of a 

comparable order of magnitude to the observed dimuon rate for KL. Therefore, we expect that the 

KL to two muon rate does not have too much to do with higher order standard box diagrams, but 
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b. Relationship of K A w and K --t pp decays. 
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rather with higher order electromagnetic corrections to the 27r” rate of KL. Thus, the expected 

flavor changing neutral current is probably masked by these electromagnetic effects. 

5.6 I-l2 IN THE SM, E FOR Bd, K 

Let us, in this Section, look at the Standard Model calculation for the decay matrix, in 

particular, the off diagonal elements in the strong eigenstate basis. In Section 5.1, we argued that 

the decay matrix elements would be small relative to the mass matrix elements. At this time we 

will attempt to better quantify what we mean by small. 

Recall that the decay matrix must be fed by real intermediate states which are on shell and 

which are common to, for example, the b and the b system. Note that, topologically, the mass 

and decay matrix elements share the same graph and therefore a common phase. In fact, the mass 

and decay matrices are the absorptive and dispersive parts of the same amplitude. Finally, one can 

note that the mass matrix does not go like the fifth power of the patent mass as the spectator decay 

rates have been shown to. That is because for the mass matrix, the momentum needs to be well 

aligned in order to go from B to intermediate state and back to B. The spectator diagram does not 

have this property and therefore, is not kinematically favorable for B ++ B transitions. 

Let us write down the box diagram values for the decay and mass matrices. In this case, 

we will take the decay matrix to leading and next to leading order. The mass matrix will be kept 

only in leading order. The mass matrix expression then corresponds to a box diagram with two 

top quarks in the intermediate states, whereas, the decay matrix has a leading term corresponding 

to two top quarks in the intermediate state and a second term corresponding to a top and charm 

quark in the internal legs. Note that the decay matrix, in the case of internal tops, is proportional to 

the external B mass which cuts off the loop integral, whereas in the case of the charm quark 

intermediate state, the internal charm mass cuts off the loop integral. 

1 
5.6.1 

Therefore, we have the higher order correction to the expression given in Eqs. 5.1.5. 

Recall also the expression for E given in Eqs. 3.3.6. To lowest order, the mass and decay matrices 

are relatively real and therefore, the real part of E is zero in that order. Basically, this happens 

96 



because we have a common lowest order diagram simply with different cutoffs. Therefore, they 

will have the same phase since the phases are associated with the vertex factors. Putting in values 

for the CKM vertex factors, one achieves a posteriori justification for the assumption that the real 

part of E in the B system is small. 

Re E - $4rl2/2W2)] 

- ~rl2Iw2 

An estimate of the real part of E in the Bd system follows as the ratio of the charm to top 

quark mass squared, which is of order 104. Therefore, we recover the assumption that in the box 

diagram approximation for CP violation, E is almost purely imaginary for the B system. This is 

the origin of the comment made with regard to dilepton asymmetries that it will be extremely 

difficult to measure CP violation using that method, because the asymmetry is proportional to the 

real part of E. 

+Im(r12/M12)-n h ; 2 [(xl : !I 
2 

Re(%,) -zsin(&) 

5.6.3 

What about the situation for the E parameter in the kaon system? It has been measured to 

be nonzero, as we said before, by measuring the lepton charge asymmetry in KL semileptonic 

decays. We want to calculate it in the SM. First, one needs to look at unitarity of the CKM 

matrix. Recall that when we first looked at the GIM mechanism for two generations, the CKM 

matrix was real and corresponded to a rotation. Obviously, one needs at least three generations for 

the Standard Model to generate CP violation. In higher order withii the CKM matrix, unitarity for 

the d and s columns leads to a small complex addition to the CKM elements which we have 

ignored so far. The unitarity relation for the d and s columns reads as follows. 
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t * v,v,+v,,v,,+v,~v,=o 
9 + vccd* 4(1-re’“)=o 

V cd --8[144(1-re-‘d)] 

5.6.4 

This means, specifically, that the cd element of the CKM matrix has a small complex part. 

By small we mean of order @ with respect to the main part. Therefore, when one adds a third 

generation, one induces only a very small complex part in the 2 x 2 submatrix characterizing the 

first two generations. It’s crucial that one needs three generations in order to generate CP violation 

and that the impact of the third generation on the reality of the 2 x 2 submatrix is very small. 

For the kaon system, as we’ve said before, the splitting of decay rates is comparable to the 

Ks decay rate itself. This is an accident, in the sense that the mass difference for CP even and odd 

states, i.e., two pion and three pion systems, is comparable to the mass of the kaon itself. 

m,=rKs-rKL-rKs=r 

IK, >=[I> 

IK,>=l2> 

&K --ImMl2/(Al-A2) 

- ImMt2/(r+iA.44) 

5.6.5 

Without specializing to the B system, but under the assumption that the E parameter is 

small, one can use Eqs. 3.3.2. Again, assuming the dominance of the mass matrix over the decay 

matrix, one gets the expression for E for the kaon system given in Eqs. 5.6.6. Taking the 

measured value for the x parameter in the kaon system, one then gets a Standard Model estimate 

for &K. 

kK/ - G2fK2’%Pc2 rm(vcd’vcs)2 

i2~2rli+til 

I [““‘fk’;4iMW2)r [ MK$cd;;-)‘] 

5.6.6 

Recall that & is a CP violating parameter. Therefore, one needs an imaginary part in the 

mass matrix in order to generate E. Recall also that we have previously mentioned that the 
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weakness of the top quark coupling to kaons means that the off diagonal parts of the mass matrix 

am dominated by the charm quark interior loop. 

For the kaon system MI2 is approximately real, and therefore mixing depends on the real 

part of Mt2. However, the CP violating parameter E for the kaon system depends on the existence 

of an imaginary part. As we saw from Eqs. 5.6.4, this is quite a small part of the CKM matrix 

element if the vertex factor is to be associated with the internal charm quark. This is what is 

different with respect to the discussion of the mass splitting in the kaon system. For the mass 

splitting, due to the weakness of the coupling of the top quark, we were dominated by internal 

charm quark loops. In the case of CP violation, what is important is the existence of an imaginary 

part in the vertex factor. We have derived previously that the imaginary part of the vertex factor, 

for the charm quark, and top quark are both weak. 

Im(Ec)2 - (r0’ sin6)2 

Im(E,)2 -(r@ sins)2 
5.6.7 

In fact, the overall imaginary vertex factor for internal charm and top loops is essentially 

the same. Therefore, for CP violation in distinction to mass splitting, internal top loops are 

important. In fact, given the equal vertex factors, top loops dominate the estimate for the CP 

violation parameter in the kaon system. 

- 1.7 x 10-3(rsincS)* 

5.6.8 

Assuming a top mass of 120 GeV, the E parameter is estimated to be 1.7 x 1O-3 times 

phase factors squared which are of order 1. Experimentally, we know that the magnitude of E for 

the kaon system is 2 x 10v3. That means that mt cannot be too large without exceeding the 

measured values of the E parameter. Therefore, experimental limits on the top quark mass would 

put constraints on the unitary triangle because that triangle depends on the phase angles in the 

CKM matrix as does E for the kaon system. 

Another estimator can be obtained by, in addition, using the box diagram for the eigenvalue 

differences in the kaon system. Looking at Eqs. 5.6.8, one realizes that we have used the 

measured valued of the x and F parameters for the kaon system, assuming that the strange quark 

is too light for the box diagram to be reliable. If one blithely goes ahead and uses the Standard 
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Model box diagram estimator for the eigenvalues, the imaginary part of E is driven (as we have 

said) by the internal top loop, whereas, the real part is dominated by the internal charm quark loop 

(see Eq. 5.2.3). 

&K - 5.6.9 

- (1.6 x IO-*)(rsin6)* 

Putting in values for 120 GeV top quark mass, 1.5 GeV charm quark mass, and l/5 

Cabbibo angle, one has again an estimate for E in the kaon system which is small and of the same 

order as the measured value. Therefore, we conclude that E is rougly calculable in the Standard 

Model for the kaon system and that its measured value constrains possible values for the phase of 

the Vtd CKM matrix element and the top quark mass in concert. However, the fact that Eq. 5.6.9 

and Eq. 5.6.8 are only in order of magnitude agreement argues for prudence. 

5.1 E’/E and EM Penguins 

Finally, one should mention CP violation in the kaon decay amplitudes in the Standard 

Model. The parameter E refers to CP violation in the mass matrix. One needs two amplitudes 

which interfere for CP violation in decays. In the KL system decaying two pions, we have the two 

pions in isotopic spin states of 0 and 2 which connect to the KL via AI = l/2 and 3/2 amplitudes. 
We know the ratio of those amplitudes from the measured 2 pion rates for K+ and Ks. 

J T(K+ + n+n” 
a;?la,- 

1 
lI-(Ks --f m) 

- 0.04 5.7.1 

This small value for the ratio of the amplitudes means that AI = 3/2 transitions are 

suppressed with respect to AI = l/2 transitions. A possible explanation for this fact is the existence 

of electromagnetic penguin diagrams. The photon carries isospin one and therefore, can be 

responsible for the AI = 3/2 amplitude. In the context of that explanation, one might expect the 

ratio of the amplitudes, counting diagrammatic vertex factors, to be simply the fine structure 

constant. Indeed, this is correct on an order of magnitude basis. 
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Now E’, being a CP violating parameter in the decay amplitudes, is the imaginary part of 

the AI = 3 / 2 amplitude. 

.+ - Im(U2 l&) 5.7.2 

In the context of the electromagnetic penguin argument, E’ is shown diagrammatically in 

Fig. 5.7. Looking at Fig. 5.7.1, one can read off the coupling constant factors at the two 

electromagnetic and the two electroweak vertices and therefore, make some crude estimator of E’ 

Note the similarity to Eq. 2.5.4 for b + sy FCNC. 

5.7.3 

- a(re4 ) sin6 O(1) 

Recall that a nonzero imaginary part of the isospin two amplitude requires the existence of 

a c, or t in the loop because the phase of an amplitude is defined by the vertex factors and the CKM 

matrix only has imaginary matrix elements for heavy flavors in the vertex. As mentioned 

previously for the kaon system, the top quark has an imaginary part comparable to the c quark as 

seen in Eq. 5.6.7. Using Eq. 5.6.9 to estimate E for the kaon system, one can get an estimate for 

the ratio of E’ / E in the kaon system. 

-~&/~l(~)“(rQ”sin8) 
E 

-a 
i 1 
j$ */(rB’sinS) 5.7.4 

- 1.5 x lO”l(rsin6) 

Obviously, this estimate for &‘l E is extremely crude. The main point is that the a factor 

comes from the electromagnetic penguin and hence the E’/ E parameter is “naturally” small in a 

“real” Standard Model. However, there are many many theoretical uncertainties and ambiguities in 

the calculation. The ultimate test is, of course, data. At the present time the ratio of E’/ E is 

experimentally less than 2 x 10-3, although there is some disagreement experimentally between 
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Fig. 5.7 E’ for K decays and the EM “Penquin” diagram. 
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Experiment 731 at Fermilab and CERN Experiment NA3 1. Note from Eq. 5.7.3 that E’/ E 

places limits on electroweak parameters, e.g., imaginary elements in the CKM matrix and the top 

quark. 

In summary, in order to observe CP violation, it is required that there be interference of 

two amplitudes with different phases. The experimental confirmation that the B and B system 

mixes and the realization that the B and 3 have common final states which are CP eigenstates, 

implies that CP violation is possible in the Standard Model for the B system. It is certainly 

allowed in the three generation Standard Model and, in fact, is predicted to exist. We’ve seen that 

CP violation can be measured in time independent integrated measurements and in time dependent 

asymmetry measurements. However, the sensitivity of those measurements is such that if the 

system mixes very rapidly, such as the Bs system, accurate determinations require time dependent 

asymmetry measurements. 
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6. SUMMARY 

The result of all these proposed measurements of asymmetries, decay rates, and branching 

fractions would be data which directly determine the CKM matrix elements. There are Standard 

Model predictions for relationships between the CKM matrix elements such as unitarity. 

Therefore, measurements of the CKM matrix elements put pressure on the Standard Model in 

terms of consistency. A “complete set” of asymmetry measurements, for example, would put 

strong constraints on the Standard Model. 

Now what does that, in fact, all mean? That is a much harder question to answer. One is 

basically taking experimental measurements and relating them to other parameters which one 

considers to be more fundamental. However, our understanding of the systematics and 

regularities found in the CKM matrix is minimal. Presumably, there is a “Balmer series” hiding 

somewhere in the CKM matrix. There is a regularity between the elements which is tantalizing; 

those regularities hint at more fundamental relationships between the generations. 

What has been described in this set of lectures is simply the relationships between different 

sets of phenomenological parameters. A much more fundamental set of questions might be 

asked. How does one calculate the elements of the CKM matrix from first principles? Why is it 

almost diagonal? Why is the b quark decay so slow? Why does the coupling fall off rapidly the 

farther one gets off diagonal? What are the regularities in the masses between the three 

generations? Why are there three generations? What is the mechanism for inducing CP violation? 

These are all extremely fundamental and interesting questions and one looks forward to 

finding answers to them. In order to get those answers, the first step on a long journey is to 

measure and constrain the matrix elements of this fundamental quantity, the CKM matrix. The 

use of B decays is universally seen within the high energy-physics community as a potential key to 

unlock some of the mysteries of the generation puzzle. We look forward to seeing what’s behind 

the door. 

“In the plan of the Great Dance plans without number interlock, and each 

movement becomes in its season the breaking into flower of the whole 

design to which all else has been directed” 

Perelandra 

C.S. Lewis 
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